• [十二省联考 2019]皮配


    CXLVI.[十二省联考 2019]皮配

    题解里”豌豆“的比喻实在太精妙了。

    先重新描述一遍题意:有 \(n\) 个豆子,每个豆子有其重量,并位于某个豆荚内。每粒豆子颜色可以为黄色/绿色,表皮可以为皱皮/圆皮。每个豆荚里所有豆子的颜色必须相同。对于所有黄色/绿色/皱皮/圆皮的豆子,其重量和有一上界。有些豆子不能同时具有某两种性状,称其为”特殊的“。求总方案数。

    首先,”重量和有上界“,想到背包问题。于是我们设计一种DP,\(f_{i,j}\) 表示黄色/皱皮的豆子分别的质量和,则绿色/圆皮的豆子可以用总质量减去得到。枚举每颗豆子是哪种具体性状,转移即可。

    然后,我们发现,大部分时候,\(i,j\) 两维都是独立的——更准确地来说,对于那些不存在特殊豆子的豆荚来说,\(i\) 一维其就是在关于豆荚颜色背包;对于那些非特殊豆子来说,\(j\) 一维就是在关于豆子表皮背包。

    于是我们设 \(f_i\) 表示黄色豆荚的总质量为 \(i\) 的方案数,\(g_i\) 表示皱皮豆子的总质量为 \(i\) 的方案数。显然复杂度皆为 \(O(nM)\)

    因为 \(k\) 很小,所以特殊的豆子和豆荚数也很小,我们就把初始的状态搬过来,设 \(h_{i,j}\) 表示初始状态的意义,用它来处理特殊的东西即可。这部分时间复杂度 \(O\Big(k\times(ks)\times M\Big)=k^2sM\),其中 \(k\) 是特殊豆子数,\(s\) 是豆子的最大质量。

    最后就拼接 \(f,g,h\) 即可计算答案。(对于某个 \(h_{i,j}\),能与其构成合法方案的 \(f\)\(g\) 各是一段区间,故对其做前缀和即可简单维护)

    需要注意存在空豆荚。

    代码:

    /*
    Mendel's peas are Awesome! 
    */
    #include<bits/stdc++.h>
    using namespace std;
    const int mod=998244353;
    int T,n,m,q,yel,gre,rou,smo,id[1010],wei[1010],fob[1010],WEI[1010],f[2510],g[2510],h[2510][310],hh[2510][310],all,res;//yellow,green,rough,smooth
    vector<int>v[1010];
    bool FOB[1010];
    int main(){
    	scanf("%d",&T);
    	while(T--){
    		scanf("%d%d",&n,&m),memset(fob,-1,sizeof(fob));
    		scanf("%d%d%d%d",&yel,&gre,&rou,&smo);
    		for(int i=1;i<=n;i++)scanf("%d%d",&id[i],&wei[i]),WEI[id[i]]+=wei[i],v[id[i]].push_back(i),all+=wei[i];
    		scanf("%d",&q);
    		for(int i=1,x,y;i<=q;i++){
    			scanf("%d%d",&x,&y);
    			fob[x]=y,FOB[id[x]]=true;
    		}
    		f[0]=1;
    		for(int i=1;i<=m;i++){
    			if(FOB[i]||v[i].empty())continue;
    			for(int j=yel-WEI[i];j>=0;j--)(f[j+WEI[i]]+=f[j])%=mod;
    		}
    		g[0]=1;
    		for(int i=1;i<=n;i++){
    			if(fob[i]!=-1)continue;
    			for(int j=rou-wei[i];j>=0;j--)(g[j+wei[i]]+=g[j])%=mod;
    		}
    		for(int i=1;i<=yel;i++)(f[i]+=f[i-1])%=mod;
    		for(int i=1;i<=rou;i++)(g[i]+=g[i-1])%=mod;
    		h[0][0]=1;
    		for(int i=1;i<=m;i++){
    			if(!FOB[i]||v[i].empty())continue;
    			memcpy(hh,h,sizeof(h));
    			for(auto x:v[i]){
    				if(fob[x]==-1)continue;
    				if(fob[x]>1)for(int j=0;j<=yel;j++)for(int k=min(rou,300);k>=wei[x];k--)(hh[j][k]+=hh[j][k-wei[x]])%=mod;
    				else if(fob[x]==1)for(int j=0;j<=yel;j++)for(int k=min(rou,300);k>=0;k--)hh[j][k]=(k>=wei[x]?hh[j][k-wei[x]]:0);
    				
    				if(fob[x]<=1)for(int j=0;j<=yel;j++)for(int k=min(rou,300);k>=wei[x];k--)(h[j][k]+=h[j][k-wei[x]])%=mod;
    				else if(fob[x]==3)for(int j=0;j<=yel;j++)for(int k=min(rou,300);k>=0;k--)h[j][k]=(k>=wei[x]?h[j][k-wei[x]]:0);
    			}
    			for(int j=0;j<=yel;j++)for(int k=min(rou,300);k>=0;k--)if(j>=WEI[i])(h[j][k]+=hh[j-WEI[i]][k])%=mod;
    		}
    		gre=all-gre,smo=all-smo;
    		for(int i=0;i<=yel;i++)for(int j=0;j<=min(rou,300);j++){
    			int F=f[yel-i];
    			if(i<gre)(F+=mod-f[gre-i-1])%=mod;
    			int G=g[rou-j];
    			if(j<smo)(G+=mod-g[smo-j-1])%=mod;
    			(res+=1ll*h[i][j]*F%mod*G%mod)%=mod;
    		}
    		printf("%d\n",res);
    		
    		memset(f,0,sizeof(f)),memset(g,0,sizeof(g)),memset(h,0,sizeof(h));
    		for(int i=1;i<=m;i++)WEI[i]=0,FOB[i]=false,v[i].clear();
    		all=res=0;
    	}
    	return 0;
    }
    

  • 相关阅读:
    安装 TensorFlow
    Active Learning
    基于PU-Learning的恶意URL检测
    AAAI 2018 论文 | 蚂蚁金服公开最新基于笔画的中文词向量算法
    Graph 卷积神经网络:概述、样例及最新进展
    深度学习在graph上的使用
    xgboost入门与实战(实战调参篇)
    xgboost入门与实战(原理篇)
    机器学习中的损失函数 (着重比较:hinge loss vs softmax loss)
    <html>
  • 原文地址:https://www.cnblogs.com/Troverld/p/14601698.html
Copyright © 2020-2023  润新知