• CF115E Linear Kingdom Races


    LI.CF115E Linear Kingdom Races

    思路1.

    \(f[i][j]\)表示:

    当前DP到第\(i\)位,且最右边的一个没有修的路是第\(j\)条路,的最大收益。

    则有

    \(f[i][i]=\max\limits_{j=0}^{i-1}f[i-1][j]\)

    这是在\(i\)号路不修的情况。

    对于其它的情况,有\(f[i][j]=f[i-1][j]-a_i\),其中\(a_i\)表示修路的代价,且有\(0\leq j<i\)

    然后考虑举办的比赛。

    对于一场比赛\((l,i,x)\),所有的\(f[i][j](j<l)\)都能获得\(x\)的收益。比赛可以直接在右端点处开vector储存。

    这样时空复杂度都是\(O(n^2)\)的。

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define int long long
    int n,m,f[2][200100],val[200100],res;
    vector<pair<int,int> >v[200100];
    inline void read(int &x){
    	x=0;
    	char c=getchar();
    	while(c>'9'||c<'0')c=getchar();
    	while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+(c^48),c=getchar();
    }
    inline void print(int x){
    	if(x<=9)putchar('0'+x);
    	else print(x/10),putchar('0'+x%10);
    }
    signed main(){
    	read(n),read(m),memset(f,0x80,sizeof(f));
    	for(int i=1;i<=n;i++)read(val[i]);
    	for(int i=1,l,r,x;i<=m;i++)read(l),read(r),read(x),v[r].push_back(make_pair(l,x));
    	f[0][0]=0;
    	for(int i=1;i<=n;i++){
    		memset(f[i&1],0x80,sizeof(f[i&1]));
    		for(int j=0;j<i;j++)f[i&1][i]=max(f[i&1][i],f[!(i&1)][j]);
    		for(int j=0;j<i;j++)f[i&1][j]=f[!(i&1)][j]-val[i];
    		for(auto j:v[i])for(int k=0;k<j.first;k++)f[i&1][k]+=j.second;
    //		for(int j=0;j<=i;j++)printf("%lld ",f[i&1][j]);puts("");
    	}
    	for(int i=0;i<=n;i++)res=max(res,f[n&1][i]);
    	print(res);
    	return 0;
    } 
    

    思路2.

    先把空间复杂度解决掉。

    发现\(i\)时刻的\(f\)数组与\(i-1\)时刻的\(f\)数组区别只有这些:

    1. \(f[i]\)的变动。

    2. \(f[0\sim i-1]\)\(-a_i\)

    3. 比赛的收益。

    那么我们完全可以自始至终只用一个\(f\)数组。

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define int long long
    int n,m,f[200100],val[200100],res;
    vector<pair<int,int> >v[200100];
    inline void read(int &x){
    	x=0;
    	char c=getchar();
    	while(c>'9'||c<'0')c=getchar();
    	while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+(c^48),c=getchar();
    }
    inline void print(int x){
    	if(x<=9)putchar('0'+x);
    	else print(x/10),putchar('0'+x%10);
    }
    signed main(){
    	read(n),read(m),memset(f,0x80,sizeof(f));
    	for(int i=1;i<=n;i++)read(val[i]);
    	for(int i=1,l,r,x;i<=m;i++)read(l),read(r),read(x),v[r].push_back(make_pair(l,x));
    	f[0]=0;
    	for(int i=1;i<=n;i++){
    		for(int j=0;j<i;j++)f[i]=max(f[i],f[j]);
    		for(int j=0;j<i;j++)f[j]-=val[i];
    		for(auto j:v[i])for(int k=0;k<j.first;k++)f[k]+=j.second;
    //		for(int j=0;j<=i;j++)printf("%lld ",f[i&1][j]);puts("");
    	}
    	for(int i=0;i<=n;i++)res=max(res,f[i]);
    	print(res);
    	return 0;
    } 
    

    思路3.

    发现所有操作只有三种:单点赋值(1),区间求\(\max\)(1),区间加/减(2,3)。

    而这些都是线段树的常规操作。

    于是大力往上一套完事。复杂度\(O(n\log n)\)

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define int long long
    #define lson x<<1
    #define rson x<<1|1
    #define mid ((l+r)>>1)
    int n,m,val[200100],res;
    vector<pair<int,int> >v[200100];
    inline void read(int &x){
    	x=0;
    	char c=getchar();
    	while(c>'9'||c<'0')c=getchar();
    	while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+(c^48),c=getchar();
    }
    inline void print(int x){
    	if(x<=9)putchar('0'+x);
    	else print(x/10),putchar('0'+x%10);
    }
    struct SegTree{
    	int mx,tag;
    }seg[800100];
    void pushup(int x){
    	seg[x].mx=max(seg[lson].mx,seg[rson].mx);
    }
    void ADD(int x,int y){
    	seg[x].tag+=y,seg[x].mx+=y;
    }
    void pushdown(int x){
    	ADD(lson,seg[x].tag),ADD(rson,seg[x].tag),seg[x].tag=0;
    }
    void modify(int x,int l,int r,int L,int R,int vl){
    	if(l>R||r<L)return;
    	if(L<=l&&r<=R){ADD(x,vl);return;}
    	pushdown(x),modify(lson,l,mid,L,R,vl),modify(rson,mid+1,r,L,R,vl),pushup(x);
    }
    int query(int x,int l,int r,int L,int R){
    	if(l>R||r<L)return 0x8080808080808080;
    	if(L<=l&&r<=R)return seg[x].mx;
    	pushdown(x);
    	return max(query(lson,l,mid,L,R),query(rson,mid+1,r,L,R));
    }
    void setup(int x,int l,int r,int P,int vl){
    	if(l>P||r<P)return;
    	if(l==r){seg[x].mx=vl,seg[x].tag=0;return;}
    	pushdown(x),setup(lson,l,mid,P,vl),setup(rson,mid+1,r,P,vl),pushup(x);
    }
    void build(int x,int l,int r){
    	if(l==r){seg[x].mx=0x8080808080808080;return;}
    	build(lson,l,mid),build(rson,mid+1,r),pushup(x); 
    }
    signed main(){
    	read(n),read(m);
    	for(int i=1;i<=n;i++)read(val[i]);
    	for(int i=1,l,r,x;i<=m;i++)read(l),read(r),read(x),v[r].push_back(make_pair(l,x));
    	build(1,1,n+1),setup(1,1,n+1,1,0);
    	for(int i=1;i<=n;i++){
    		setup(1,1,n+1,i+1,query(1,1,n,1,i));
    		modify(1,1,n+1,1,i,-val[i]);
    		for(auto j:v[i])modify(1,1,n+1,1,j.first,j.second);
    //		for(int j=0;j<=i;j++)printf("%lld ",f[i&1][j]);puts("");
    	}
    	print(query(1,1,n+1,1,n+1));
    	return 0;
    } 
    

  • 相关阅读:
    R语言学习笔记:向量化
    R语言笔记:快速入门
    再分析 返回值加引用&,const
    matlab 怎么保存plot的图 到指定文件夹
    不要在头文件中使用 using namespace std;
    散列表 (Hash table,也叫哈希表)
    重载操作符 operator overloading 学习笔记
    转 XMLHttpRequest().readyState的五种状态详解
    值得回味的基础知识理解加深
    完美解决fixed 水平居中问题
  • 原文地址:https://www.cnblogs.com/Troverld/p/14597400.html
Copyright © 2020-2023  润新知