• Poj(3522),UVa(1395),枚举生成树


    题目链接:http://poj.org/problem?id=3522

    Slim Span
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 7522   Accepted: 3988

    Description

    Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

    The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge eE has its weight w(e).

    A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


    Figure 5: A graph G and the weights of the edges

    For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


    Figure 6: Examples of the spanning trees of G

    There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

    Your job is to write a program that computes the smallest slimness.

    Input

    The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

    n m  
    a1 b1 w1
       
    am bm wm

    Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ mn(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

    Output

    For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

    Sample Input

    4 5
    1 2 3
    1 3 5
    1 4 6
    2 4 6
    3 4 7
    4 6
    1 2 10
    1 3 100
    1 4 90
    2 3 20
    2 4 80
    3 4 40
    2 1
    1 2 1
    3 0
    3 1
    1 2 1
    3 3
    1 2 2
    2 3 5
    1 3 6
    5 10
    1 2 110
    1 3 120
    1 4 130
    1 5 120
    2 3 110
    2 4 120
    2 5 130
    3 4 120
    3 5 110
    4 5 120
    5 10
    1 2 9384
    1 3 887
    1 4 2778
    1 5 6916
    2 3 7794
    2 4 8336
    2 5 5387
    3 4 493
    3 5 6650
    4 5 1422
    5 8
    1 2 1
    2 3 100
    3 4 100
    4 5 100
    1 5 50
    2 5 50
    3 5 50
    4 1 150
    0 0

    Sample Output

    1
    20
    0
    -1
    -1
    1
    0
    1686
    50

    Source

     
    题意:求最大边与最小边差值最小的生成树
    分析:枚举啊!!!
     
    #include <stdio.h>
    #include <algorithm>
    
    using namespace std;
    
    #define MAXN 6000
    #define INF 0x3f3f3f3f
    
    struct Edge
    {
        int u,v;
        int w;
    } edge[MAXN];
    
    int father[MAXN];
    
    int Find_Set (int x)
    {
        if(x!=father[x])
            father[x] = Find_Set(father[x]);
        return father[x];
    }
    
    int n,m;
    bool cmp(Edge a,Edge b)
    {
        return a.w<b.w;
    }
    
    int main()
    {
        //freopen("input.txt","r",stdin);
        while(scanf("%d%d",&n,&m),n)
        {
            bool flag = false;
    
            for(int i=0; i<m; i++)
                scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
            sort(edge,edge+m,cmp);
            //for(int i=0; i<m; i++)
                //printf("%d ",edge[i].w);
           // puts("");
    
            int ans = INF;
            int i,j;
            for(i=0; i<m; i++)
            {
                for(int i=1; i<=n; i++)
                    father[i] = i;
                int cnt = 0;
                for(j=i; j<m; j++)
                {
                    int fx = Find_Set(edge[j].u);
                    int fy = Find_Set(edge[j].v);
                    if(fx==fy)
                        continue;
    
                    father[fy] = fx;
                    cnt++;
                    if(cnt==n-1)
                    {
                        flag = true;
                        break;
                    }
                }
                if(cnt==n-1)
                    ans = min(ans,edge[j].w-edge[i].w);
            }
            if(flag)
                printf("%d
    ",ans);
            else puts("-1");
        }
        return 0;
    }
  • 相关阅读:
    Python笔记 —— 使用open打开和操作txt文件
    Python笔记 —— 文件路径
    Python笔记 —— 四种容器(列表,元组,字典,集合)
    C++笔记 —— 异常
    C++笔记 —— map常用方法
    C++笔记 —— 在模板类中重载操作符
    C++笔记 —— vector常用方法
    C++笔记 —— 强制类型转换
    TCP连接三次握手四次挥手
    HashMap中自定义对象key,实现hashcode与equal
  • 原文地址:https://www.cnblogs.com/TreeDream/p/5775418.html
Copyright © 2020-2023  润新知