• Gluon sgd


    from mxnet import nd,autograd,init,gluon
    from mxnet.gluon import data as gdata,loss as gloss,nn
    
    num_inputs = 2
    num_examples = 1000
    true_w = [2,-3.4]
    true_b = 4.2
    
    features = nd.random.normal(scale=1,shape=(num_examples,num_inputs))
    labels = true_w[0]*features[:,0] + true_w[1]*features[:,1] + true_b
    labels += nd.random.normal(scale=0.01,shape=labels.shape)
    
    # 造小批量数据集
    dataset = gdata.ArrayDataset(features,labels)
    batch_size = 10
    data_iter = gdata.DataLoader(dataset,batch_size,shuffle=True)
    
    # 定义网络
    net = nn.Sequential()
    net.add(nn.Dense(1))
    
    net.initialize(init.Normal(sigma=0))
    
    
    # 损失函数
    loss = gloss.L2Loss()
    
    # 优化算法
    trainer = gluon.Trainer(net.collect_params(),'sgd',{'learning_rate':0.01})
    
    num_epochs = 3
    for epoch in range(1, num_epochs + 1):
        for X, y in data_iter:
            print(X)
            print(y)
            with autograd.record():
                l = loss(net(X), y)
            print(l)
            l.backward()
            trainer.step(batch_size)
        l = loss(net(features), labels)
        print('epoch %d, loss: %f' % (epoch, l.mean().asnumpy()))
        

    从最简单的线性回归来说,小批量随机梯度下降的时候,X,y 从迭代器中取出,也是bach_size大小的数据集,那么网络的计算,同样也是小批量的。

    即代码 l = loss(net(X),y) 包含了,小批量数据集,每一个数据丢到网络中,计算出返回值以后,和真实值得损失。

  • 相关阅读:
    WYT的刷子
    小烈送菜
    猴腮雷
    基于Docker的Mysql主从复制搭建
    C#集合类型大揭秘
    ASP.NET三剑客 HttpApplication HttpModule HttpHandler 解析
    使用缓存的正确姿势
    【模块化那些事】 拆散的模块化
    分享一个开源的网盘下载工具BaiduPCS-Go
    【抽象那些事】不必要的抽象
  • 原文地址:https://www.cnblogs.com/TreeDream/p/10050264.html
Copyright © 2020-2023  润新知