• AlexNet 分类 FashionMNIST


    from mxnet import gluon,init,nd,autograd
    from mxnet.gluon import data as gdata,nn
    from mxnet.gluon import loss as gloss
    import mxnet as mx
    import time
    import os
    import sys
    
    
    # 建立网络
    net = nn.Sequential()
    # 使用较大的 11 x 11 窗口来捕获物体。同时使用步幅 4 来较大减小输出高和宽。
    # 这里使用的输入通道数比 LeNet 中的也要大很多。
    net.add(nn.Conv2D(96, kernel_size=11, strides=4, activation='relu'),
            nn.MaxPool2D(pool_size=3, strides=2),
            # 减小卷积窗口,使用填充为 2 来使得输入输出高宽一致,且增大输出通道数。
            nn.Conv2D(256, kernel_size=5, padding=2, activation='relu'),
            nn.MaxPool2D(pool_size=3, strides=2),
            # 连续三个卷积层,且使用更小的卷积窗口。除了最后的卷积层外,进一步增大了输出通道数。
            # 前两个卷积层后不使用池化层来减小输入的高和宽。
            nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
            nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
            nn.Conv2D(256, kernel_size=3, padding=1, activation='relu'),
            nn.MaxPool2D(pool_size=3, strides=2),
            # 这里全连接层的输出个数比 LeNet 中的大数倍。使用丢弃层来缓解过拟合。
            nn.Dense(4096, activation="relu"), nn.Dropout(0.5),
            nn.Dense(4096, activation="relu"), nn.Dropout(0.5),
            # 输出层。由于这里使用 Fashion-MNIST,所以用类别数为 10,而非论文中的 1000。
            nn.Dense(10))
    
    X = nd.random.uniform(shape=(1,1,224,224))
    net.initialize()
    for layer in net:
        X = layer(X)
        print(layer.name,'output shape:	',X.shape)
    
    
    # 读取数据
    # fashionMNIST 28*28 转为224*224
    def load_data_fashion_mnist(batch_size, resize=None, root=os.path.join(
            '~', '.mxnet', 'datasets', 'fashion-mnist')):
        root = os.path.expanduser(root)  # 展开用户路径 '~'。
        transformer = []
        if resize:
            transformer += [gdata.vision.transforms.Resize(resize)]
        transformer += [gdata.vision.transforms.ToTensor()]
        transformer = gdata.vision.transforms.Compose(transformer)
        mnist_train = gdata.vision.FashionMNIST(root=root, train=True)
        mnist_test = gdata.vision.FashionMNIST(root=root, train=False)
        num_workers = 0 if sys.platform.startswith('win32') else 4
        train_iter = gdata.DataLoader(
            mnist_train.transform_first(transformer), batch_size, shuffle=True,
            num_workers=num_workers)
        test_iter = gdata.DataLoader(
            mnist_test.transform_first(transformer), batch_size, shuffle=False,
            num_workers=num_workers)
        return train_iter, test_iter
    
    batch_size = 128
    train_iter, test_iter = load_data_fashion_mnist(batch_size, resize=224)
    
    
    def accuracy(y_hat,y):
        return (y_hat.argmax(axis=1)==y.astype('float32')).mean().asscalar()
    
    def evaluate_accuracy(data_iter,net,ctx):
        acc = nd.array([0],ctx=ctx)
        for X,y in data_iter:
            X = X.as_in_context(ctx)
            y = y.as_in_context(ctx)
            acc+=accuracy(net(X),y)
        return acc.asscalar() / len(data_iter)
    
    
    # 训练模型
    def train(net,train_iter,test_iter,batch_size,trainer,ctx,num_epochs):
        print('training on',ctx)
        loss = gloss.SoftmaxCrossEntropyLoss()
    
        for epoch in range(num_epochs):
            train_l_sum = 0
            train_acc_sum = 0
            start = time.time()
            for X,y in train_iter:
                X = X.as_in_context(ctx)
                y = y.as_in_context(ctx)
    
                with autograd.record():
                    y_hat = net(X)
                    l = loss(y_hat,y)
    
                l.backward()
                trainer.step(batch_size)
    
                train_l_sum += l.mean().asscalar()
                train_acc_sum += evaluate_accuracy(test_iter,net,ctx)
            test_acc = evaluate_accuracy(test_iter,net,ctx)
            print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, '
                  'time %.1f sec' % (epoch+1,train_l_sum/len(train_iter),test_acc,time.time()-start))
    
    def try_gpu():
        try:
            ctx = mx.gpu()
            _ = nd.zeros((1,),ctx=ctx)
        except mx.base.MXNetError:
            ctx = mx.cpu()
        return ctx
    
    
    lr = 0.01
    num_epochs = 5
    ctx = try_gpu()
    
    net.initialize(force_reinit=True,ctx=ctx,init=init.Xavier())
    trainer = gluon.Trainer(net.collect_params(),'sgd',{'learning_rate':lr})
    train(net,train_iter,test_iter,batch_size,trainer,ctx,num_epochs)

  • 相关阅读:
    VTK初学一,b_PolyVertex多个图形点的绘制
    VTK初学一,a_Vertex图形点的绘制
    Python基础学习之集合
    Apache
    NTP时间同步服务和DNS服务
    NFS服务及DHCPD服务
    samba服务及vsftpd服务
    Linux rpm和yum软件管理
    Linux网络技术管理及进程管理
    Linux RAID磁盘阵列
  • 原文地址:https://www.cnblogs.com/TreeDream/p/10045670.html
Copyright © 2020-2023  润新知