MLP
In [1]:
%matplotlib inline
import gluonbook as gb
from mxnet.gluon import loss as gloss
from mxnet import nd
from mxnet import autograd
In [2]:
batch_size = 256
train_iter, test_iter = gb.load_data_fashion_mnist(batch_size)
模型参数初始化
In [3]:
num_inputs, num_out_puts, num_hiddens = 28*28, 10, 256
W1 = nd.random.normal(scale=0.01,shape=(num_inputs,num_hiddens))
b1 = nd.zeros(num_hiddens)
W2 = nd.random.normal(scale=0.01,shape=(num_hiddens,num_out_puts))
b2 = nd.zeros(num_out_puts)
params = [W1,b1,W2,b2]
for param in params:
param.attach_grad()
激活函数
In [4]:
def relu(X):
return nd.maximum(X,0)
In [5]:
X = nd.array([[1,3,-1],[2,-2,-1]])
relu(X)
Out[5]:
定义模型 H = relu(XW+b) O = HW + b
In [6]:
def net(X):
X = X.reshape((-1, num_inputs))
H = relu(nd.dot(X,W1) + b1)
return nd.dot(H,W2) + b2
softmax损失函数
In [7]:
loss = gloss.SoftmaxCrossEntropyLoss()
调整参数
In [9]:
def sgd(params, lr, batch_size):
for param in params:
param[:] = param - lr * param.grad / batch_size
是否预测中
In [10]:
def accuracy(y_hat,y):
return (y_hat.argmax(axis=1)==y.astype('float32')).mean().asscalar()
正确率
In [11]:
def evaluate_accuracy(data_iter,net):
acc = 0
for X,y in data_iter:
acc+= accuracy(net(X),y)
return acc / len(data_iter)
训练模型
In [12]:
def train(net,train_iter,test_iter,loss,num_epochs,batch_size,params=None,lr=None,trainer=None):
for epoch in range(num_epochs):
train_l_sum = 0
train_acc_sum = 0
for X,y in train_iter:
with autograd.record():
y_hat = net(X)
l = loss(y_hat,y)
l.backward()
if trainer is None:
sgd(params, lr , batch_size)
else:
trainer.step(batch_size)
train_l_sum += l.mean().asscalar()
train_acc_sum += accuracy(y_hat,y)
test_acc = evaluate_accuracy(test_iter,net)
print('epoch %d, loss %.4f, train acc %.3f,test acc %.3f'
%(epoch+1, train_l_sum / len(train_iter),
train_acc_sum / len(train_iter),test_acc))
num_epochs , lr = 5, 0.1
train(net, train_iter,test_iter,loss,num_epochs,batch_size,params,lr)
In [ ]: