• softmax实现cifar10分类


     将cifar10改成单一通道后,套用前面的softmax分类,分类率40%左右,想哭。。。

    In [1]:
    %matplotlib inline
    from mxnet.gluon import data as gdata
    from mxnet import autograd,nd
    import gluonbook as gb
    import sys
    
    In [2]:
    cifar_train = gdata.vision.CIFAR10(train=True)
    cifar_test = gdata.vision.CIFAR10(train=False)
    
    In [3]:
    (len(cifar_train),len(cifar_test))
    
    Out[3]:
    (50000, 10000)
    In [4]:
    feature,label = cifar_train[0]
    
    In [5]:
    feature.shape,feature.dtype
    
    Out[5]:
    ((32, 32, 3), numpy.uint8)
    In [6]:
    label,type(label),label.dtype
    
    Out[6]:
    (6, numpy.int32, dtype('int32'))
    In [7]:
    batch_size = 256
    transformer = gdata.vision.transforms.ToTensor()
    
    In [8]:
    if sys.platform.startswith('win'):
        num_workers = 0  # 0 表示不用额外的进程来加速读取数据。
    else:
        num_workers = 4
    
    train_iter = gdata.DataLoader(cifar_train.transform_first(transformer),
                                  batch_size, shuffle=True,
                                  num_workers=num_workers)
    test_iter = gdata.DataLoader(cifar_test.transform_first(transformer),
                                 batch_size, shuffle=False,
                                 num_workers=num_workers)
    
    In [9]:
    len(train_iter)
    
    Out[9]:
    196
    In [10]:
    for X,y in train_iter:
        print(X)
        break
    
     
    [[[[0.3137255  0.3019608  0.34509805 ... 0.2901961  0.3019608
        0.34901962]
       [0.36078432 0.35686275 0.32941177 ... 0.23137255 0.2509804
        0.3764706 ]
       [0.34509805 0.42352942 0.47058824 ... 0.1882353  0.19607843
        0.3254902 ]
       ...
       [0.7529412  0.654902   0.5882353  ... 0.67058825 0.6627451
        0.78039217]
       [0.72156864 0.60784316 0.5764706  ... 0.63529414 0.63529414
        0.7372549 ]
       [0.65882355 0.6117647  0.6039216  ... 0.67058825 0.6627451
        0.6901961 ]]
    
      [[0.3137255  0.28627452 0.3137255  ... 0.28627452 0.29803923
        0.34509805]
       [0.36078432 0.34117648 0.3019608  ... 0.22745098 0.24705882
        0.37254903]
       [0.34509805 0.40392157 0.44313726 ... 0.18431373 0.19215687
        0.32156864]
       ...
       [0.8039216  0.7058824  0.6431373  ... 0.7019608  0.69803923
        0.8156863 ]
       [0.7764706  0.6627451  0.6313726  ... 0.6666667  0.6666667
        0.7764706 ]
       [0.7176471  0.6666667  0.65882355 ... 0.7019608  0.69803923
        0.7254902 ]]
    
      [[0.21960784 0.2        0.23137255 ... 0.21176471 0.21960784
        0.26666668]
       [0.26666668 0.2509804  0.21960784 ... 0.14901961 0.16862746
        0.29411766]
       [0.2509804  0.31764707 0.36078432 ... 0.10588235 0.11372549
        0.24313726]
       ...
       [0.6039216  0.5058824  0.4392157  ... 0.49803922 0.48235294
        0.5882353 ]
       [0.5764706  0.4627451  0.43137255 ... 0.46666667 0.4627451
        0.5529412 ]
       [0.5137255  0.46666667 0.45882353 ... 0.5137255  0.49803922
        0.5137255 ]]]
    
    
     [[[0.14901961 0.14901961 0.15294118 ... 0.14509805 0.09411765
        0.23137255]
       [0.15686275 0.15686275 0.16078432 ... 0.15686275 0.11372549
        0.2509804 ]
       [0.16078432 0.16470589 0.16862746 ... 0.16862746 0.12941177
        0.2627451 ]
       ...
       [0.16862746 0.12156863 0.14901961 ... 0.30588236 0.42352942
        0.24313726]
       [0.16862746 0.1254902  0.13333334 ... 0.28235295 0.39607844
        0.22352941]
       [0.16470589 0.1254902  0.09411765 ... 0.19607843 0.29411766
        0.16862746]]
    
      [[0.15294118 0.15294118 0.15686275 ... 0.15294118 0.09803922
        0.23529412]
       [0.16078432 0.16078432 0.16470589 ... 0.16470589 0.11764706
        0.25490198]
       [0.16470589 0.16862746 0.17254902 ... 0.1764706  0.13725491
        0.27058825]
       ...
       [0.17254902 0.1254902  0.14901961 ... 0.23137255 0.3019608
        0.19607843]
       [0.16862746 0.1254902  0.13333334 ... 0.22745098 0.28627452
        0.18039216]
       [0.16862746 0.12941177 0.09411765 ... 0.1764706  0.24705882
        0.14901961]]
    
      [[0.13333334 0.13333334 0.13725491 ... 0.15686275 0.09019608
        0.21568628]
       [0.14117648 0.14117648 0.14509805 ... 0.16862746 0.10980392
        0.23529412]
       [0.14509805 0.14901961 0.15294118 ... 0.18039216 0.1254902
        0.24705882]
       ...
       [0.14901961 0.10980392 0.13333334 ... 0.17254902 0.21960784
        0.15686275]
       [0.14901961 0.11372549 0.12156863 ... 0.18431373 0.20392157
        0.13333334]
       [0.14901961 0.11372549 0.08627451 ... 0.16078432 0.21176471
        0.1254902 ]]]
    
    
     [[[0.07843138 0.08627451 0.10196079 ... 0.0627451  0.05490196
        0.04705882]
       [0.10980392 0.08627451 0.11764706 ... 0.06666667 0.05490196
        0.04705882]
       [0.09019608 0.07058824 0.09411765 ... 0.05882353 0.05882353
        0.04705882]
       ...
       [0.18039216 0.16862746 0.1882353  ... 0.13725491 0.13725491
        0.13333334]
       [0.14901961 0.15294118 0.16470589 ... 0.14901961 0.12941177
        0.12156863]
       [0.13725491 0.14117648 0.15686275 ... 0.13725491 0.12156863
        0.11764706]]
    
      [[0.08627451 0.09411765 0.10980392 ... 0.07058824 0.0627451
        0.05490196]
       [0.12156863 0.09411765 0.1254902  ... 0.07450981 0.0627451
        0.05490196]
       [0.10588235 0.08235294 0.10196079 ... 0.06666667 0.06666667
        0.05490196]
       ...
       [0.19607843 0.1882353  0.2        ... 0.15294118 0.15294118
        0.14509805]
       [0.16470589 0.17254902 0.1764706  ... 0.16078432 0.14117648
        0.13333334]
       [0.15294118 0.16078432 0.16862746 ... 0.14901961 0.13333334
        0.12941177]]
    
      [[0.07058824 0.07843138 0.09019608 ... 0.05882353 0.05098039
        0.05098039]
       [0.10980392 0.07450981 0.10588235 ... 0.0627451  0.05490196
        0.05098039]
       [0.08627451 0.05882353 0.08627451 ... 0.05490196 0.05490196
        0.04705882]
       ...
       [0.16078432 0.14901961 0.16862746 ... 0.1254902  0.1254902
        0.12156863]
       [0.12941177 0.13333334 0.14117648 ... 0.13333334 0.11372549
        0.10588235]
       [0.11764706 0.1254902  0.13333334 ... 0.12156863 0.10588235
        0.10196079]]]
    
    
     ...
    
    
     [[[0.20784314 0.36078432 0.85490197 ... 0.972549   0.9647059
        0.96862745]
       [0.22745098 0.35686275 0.827451   ... 0.9764706  0.96862745
        0.9647059 ]
       [0.3372549  0.5019608  0.90588236 ... 0.9764706  0.9764706
        0.9647059 ]
       ...
       [0.08627451 0.08627451 0.05098039 ... 0.15294118 0.10980392
        0.09803922]
       [0.14901961 0.09411765 0.05098039 ... 0.10980392 0.18431373
        0.2784314 ]
       [0.3882353  0.27058825 0.14117648 ... 0.07058824 0.11764706
        0.16470589]]
    
      [[0.09803922 0.24705882 0.8156863  ... 0.9411765  0.9254902
        0.91764706]
       [0.14509805 0.25882354 0.7882353  ... 0.9372549  0.9254902
        0.8980392 ]
       [0.2784314  0.43137255 0.88235295 ... 0.9372549  0.9411765
        0.92941177]
       ...
       [0.06666667 0.07450981 0.05098039 ... 0.13725491 0.09411765
        0.08235294]
       [0.14117648 0.09019608 0.05098039 ... 0.09803922 0.17254902
        0.26666668]
       [0.3882353  0.27450982 0.14117648 ... 0.0627451  0.10980392
        0.15686275]]
    
      [[0.10588235 0.26666668 0.827451   ... 0.9607843  0.9411765
        0.92156863]
       [0.14117648 0.28627452 0.8156863  ... 0.94509804 0.9411765
        0.9254902 ]
       [0.27450982 0.4392157  0.88235295 ... 0.9254902  0.9490196
        0.96862745]
       ...
       [0.0627451  0.07058824 0.04313726 ... 0.13725491 0.09803922
        0.09019608]
       [0.13333334 0.08235294 0.04313726 ... 0.09803922 0.1764706
        0.27058825]
       [0.38039216 0.2627451  0.13333334 ... 0.06666667 0.11372549
        0.16078432]]]
    
    
     [[[0.35686275 0.33333334 0.34901962 ... 0.19607843 0.1882353
        0.1882353 ]
       [0.38431373 0.37254903 0.39215687 ... 0.25882354 0.27450982
        0.2627451 ]
       [0.38431373 0.38039216 0.3882353  ... 0.2509804  0.25490198
        0.24705882]
       ...
       [0.7764706  0.76862746 0.72156864 ... 0.76862746 0.77254903
        0.77254903]
       [0.77254903 0.7647059  0.77254903 ... 0.76862746 0.76862746
        0.77254903]
       [0.7647059  0.75686276 0.7529412  ... 0.75686276 0.7529412
        0.75686276]]
    
      [[0.35686275 0.3372549  0.34509805 ... 0.20784314 0.20392157
        0.19607843]
       [0.3882353  0.38039216 0.39607844 ... 0.26666668 0.2901961
        0.2627451 ]
       [0.3882353  0.38039216 0.3882353  ... 0.2509804  0.26666668
        0.25490198]
       ...
       [0.78039217 0.77254903 0.73333335 ... 0.76862746 0.77254903
        0.77254903]
       [0.77254903 0.7647059  0.77254903 ... 0.76862746 0.76862746
        0.77254903]
       [0.7647059  0.75686276 0.75686276 ... 0.7490196  0.7529412
        0.75686276]]
    
      [[0.2901961  0.2627451  0.28235295 ... 0.13725491 0.13725491
        0.13725491]
       [0.34901962 0.3372549  0.36078432 ... 0.20392157 0.21960784
        0.2       ]
       [0.36078432 0.3529412  0.37254903 ... 0.20784314 0.21568628
        0.21176471]
       ...
       [0.77254903 0.7607843  0.72156864 ... 0.7607843  0.7647059
        0.7647059 ]
       [0.7647059  0.75686276 0.7607843  ... 0.7607843  0.7607843
        0.7647059 ]
       [0.7607843  0.7529412  0.7490196  ... 0.74509805 0.74509805
        0.7490196 ]]]
    
    
     [[[0.8745098  0.8784314  0.8784314  ... 0.8235294  0.8
        0.7490196 ]
       [0.83137256 0.8235294  0.827451   ... 0.7647059  0.74509805
        0.73333335]
       [0.8039216  0.79607844 0.8039216  ... 0.67058825 0.6313726
        0.70980394]
       ...
       [0.40784314 0.3647059  0.34901962 ... 0.29803923 0.27450982
        0.28235295]
       [0.41568628 0.36078432 0.35686275 ... 0.26666668 0.25882354
        0.28627452]
       [0.3882353  0.3529412  0.34117648 ... 0.2784314  0.26666668
        0.28235295]]
    
      [[0.8901961  0.89411765 0.89411765 ... 0.8117647  0.8039216
        0.76862746]
       [0.84705883 0.8392157  0.84313726 ... 0.75686276 0.74509805
        0.7529412 ]
       [0.81960785 0.8117647  0.81960785 ... 0.6627451  0.6313726
        0.7294118 ]
       ...
       [0.3372549  0.31764707 0.30588236 ... 0.2784314  0.25490198
        0.2627451 ]
       [0.32156864 0.29803923 0.29411766 ... 0.23921569 0.23529412
        0.25882354]
       [0.29411766 0.28235295 0.27450982 ... 0.2509804  0.24705882
        0.25882354]]
    
      [[0.9372549  0.9411765  0.9411765  ... 0.85490197 0.8627451
        0.8352941 ]
       [0.89411765 0.8862745  0.8901961  ... 0.79607844 0.8039216
        0.81960785]
       [0.8666667  0.85882354 0.8666667  ... 0.7019608  0.6901961
        0.79607844]
       ...
       [0.23921569 0.20784314 0.19607843 ... 0.30588236 0.2627451
        0.2627451 ]
       [0.23529412 0.2        0.19607843 ... 0.26666668 0.23137255
        0.2509804 ]
       [0.21960784 0.2        0.1882353  ... 0.27058825 0.23921569
        0.2509804 ]]]]
    <NDArray 256x3x32x32 @cpu(0)>
    
     
    In [11]:
    def wrapped_iter(data_iter):
        for X, y in data_iter:
            X = X[:, :1, :, :]
            yield X, y
    
    for X, y in wrapped_iter(train_iter):
        print(X)
        print(y)
        break
    
    for X, y in wrapped_iter(test_iter):
        print(X)
        print(y)
        break
    
     
    [[[[0.40784314 0.3882353  0.40392157 ... 0.2509804  0.23921569
        0.22745098]
       [0.4        0.3882353  0.4        ... 0.2627451  0.2627451
        0.23529412]
       [0.39607844 0.38039216 0.4        ... 0.2901961  0.2901961
        0.26666668]
       ...
       [0.79607844 0.7882353  0.7882353  ... 0.59607846 0.58431375
        0.5764706 ]
       [0.74509805 0.7607843  0.74509805 ... 0.6431373  0.62352943
        0.6117647 ]
       [0.73333335 0.7254902  0.7372549  ... 0.6392157  0.6431373
        0.6313726 ]]]
    
    
     [[[1.         0.99215686 0.96862745 ... 0.62352943 0.6862745
        0.8627451 ]
       [1.         0.96862745 0.92156863 ... 0.5764706  0.6901961
        0.7607843 ]
       [1.         0.95686275 0.8745098  ... 0.63529414 0.7529412
        0.7607843 ]
       ...
       [0.49411765 0.5058824  0.58431375 ... 0.7019608  0.7294118
        0.7490196 ]
       [0.6431373  0.69803923 0.7254902  ... 0.7019608  0.7137255
        0.7176471 ]
       [0.8666667  0.9137255  0.8039216  ... 0.7058824  0.75686276
        0.77254903]]]
    
    
     [[[0.5411765  0.5411765  0.5647059  ... 0.29411766 0.21960784
        0.25882354]
       [0.58431375 0.56078434 0.5803922  ... 0.25490198 0.20392157
        0.26666668]
       [0.61960787 0.5686275  0.57254905 ... 0.23137255 0.21960784
        0.25882354]
       ...
       [0.59607846 0.6745098  0.70980394 ... 0.8352941  0.81960785
        0.8       ]
       [0.60784316 0.6901961  0.70980394 ... 0.8980392  0.91764706
        0.8156863 ]
       [0.6745098  0.75686276 0.7372549  ... 0.89411765 0.92156863
        0.9098039 ]]]
    
    
     ...
    
    
     [[[0.20392157 0.21176471 0.2        ... 0.14509805 0.16862746
        0.13725491]
       [0.19215687 0.20392157 0.21568628 ... 0.15294118 0.12156863
        0.09019608]
       [0.22352941 0.20784314 0.19607843 ... 0.21176471 0.17254902
        0.09803922]
       ...
       [0.49019608 0.47058824 0.5058824  ... 0.17254902 0.09411765
        0.14509805]
       [0.5019608  0.5882353  0.7019608  ... 0.1882353  0.18039216
        0.18039216]
       [0.42352942 0.5529412  0.68235296 ... 0.2        0.20784314
        0.23137255]]]
    
    
     [[[0.6431373  0.5803922  0.5921569  ... 0.24313726 0.3647059
        0.27450982]
       [0.69803923 0.6901961  0.5372549  ... 0.40392157 0.36078432
        0.2901961 ]
       [0.44705883 0.65882355 0.6        ... 0.49803922 0.3529412
        0.29411766]
       ...
       [0.827451   0.8039216  0.72156864 ... 0.25490198 0.25490198
        0.29411766]
       [0.89411765 0.8156863  0.7490196  ... 0.23529412 0.25882354
        0.2901961 ]
       [0.91764706 0.8392157  0.65882355 ... 0.22352941 0.22745098
        0.27058825]]]
    
    
     [[[0.04313726 0.07843138 0.14117648 ... 0.31764707 0.3254902
        0.25882354]
       [0.03529412 0.0627451  0.10980392 ... 0.3254902  0.28235295
        0.2627451 ]
       [0.01960784 0.05098039 0.07843138 ... 0.27450982 0.23529412
        0.2901961 ]
       ...
       [0.2627451  0.2901961  0.2509804  ... 0.32941177 0.34901962
        0.3254902 ]
       [0.24313726 0.21176471 0.1882353  ... 0.32941177 0.3137255
        0.28627452]
       [0.28235295 0.24705882 0.21960784 ... 0.3254902  0.29411766
        0.26666668]]]]
    <NDArray 256x1x32x32 @cpu(0)>
    
    [2 9 4 7 3 1 3 5 9 6 2 9 4 4 9 5 3 7 2 9 3 2 1 4 3 1 0 6 7 4 4 0 5 6 3 3 8
     2 6 1 8 1 4 0 7 1 4 8 4 5 1 0 6 8 1 0 8 4 4 7 0 9 9 2 6 4 4 2 7 3 4 3 0 0
     9 2 4 0 7 6 5 9 6 5 0 0 0 6 7 8 8 7 7 8 7 9 3 4 4 6 1 0 5 6 0 6 6 7 1 8 9
     2 2 5 2 9 9 8 6 2 4 3 1 7 0 2 4 8 3 6 3 7 2 4 4 9 2 3 7 0 6 9 4 9 6 6 7 6
     8 2 5 4 7 6 0 2 9 5 9 3 1 5 9 2 1 7 7 0 5 0 5 2 3 9 7 1 3 5 5 7 0 6 2 3 1
     5 3 6 2 2 5 7 0 7 5 8 5 9 7 0 7 2 8 1 7 4 2 3 8 6 1 6 1 6 0 8 8 8 7 9 4 2
     6 6 9 1 5 2 5 1 4 6 1 8 9 2 4 7 0 4 3 3 6 5 9 4 1 0 2 5 9 3 1 6 6 6]
    <NDArray 256 @cpu(0)>
    
    [[[[0.61960787 0.62352943 0.64705884 ... 0.5372549  0.49411765
        0.45490196]
       [0.59607846 0.5921569  0.62352943 ... 0.53333336 0.49019608
        0.46666667]
       [0.5921569  0.5921569  0.61960787 ... 0.54509807 0.50980395
        0.47058824]
       ...
       [0.26666668 0.16470589 0.12156863 ... 0.14901961 0.05098039
        0.15686275]
       [0.23921569 0.19215687 0.13725491 ... 0.10196079 0.11372549
        0.07843138]
       [0.21176471 0.21960784 0.1764706  ... 0.09411765 0.13333334
        0.08235294]]]
    
    
     [[[0.92156863 0.90588236 0.9098039  ... 0.9137255  0.9137255
        0.9098039 ]
       [0.93333334 0.92156863 0.92156863 ... 0.9254902  0.9254902
        0.92156863]
       [0.92941177 0.91764706 0.91764706 ... 0.92156863 0.92156863
        0.91764706]
       ...
       [0.34117648 0.16862746 0.07450981 ... 0.6627451  0.7137255
        0.7372549 ]
       [0.32156864 0.18039216 0.14117648 ... 0.68235296 0.7254902
        0.73333335]
       [0.33333334 0.24313726 0.22745098 ... 0.65882355 0.7058824
        0.7294118 ]]]
    
    
     [[[0.61960787 0.61960787 0.54509807 ... 0.89411765 0.92941177
        0.93333334]
       [0.6666667  0.6745098  0.5921569  ... 0.9098039  0.9647059
        0.9647059 ]
       [0.68235296 0.6901961  0.6156863  ... 0.9019608  0.98039216
        0.9607843 ]
       ...
       [0.12156863 0.11764706 0.10196079 ... 0.14509805 0.03529412
        0.01568628]
       [0.09019608 0.10588235 0.09803922 ... 0.07450981 0.01568628
        0.01960784]
       [0.10980392 0.11764706 0.1254902  ... 0.01960784 0.01568628
        0.02745098]]]
    
    
     ...
    
    
     [[[0.2627451  0.26666668 0.27450982 ... 0.28235295 0.2784314
        0.27450982]
       [0.27058825 0.2784314  0.28627452 ... 0.2901961  0.2901961
        0.28627452]
       [0.2784314  0.28235295 0.28627452 ... 0.29411766 0.2901961
        0.28627452]
       ...
       [0.35686275 0.3882353  0.37254903 ... 0.30980393 0.34901962
        0.3647059 ]
       [0.33333334 0.35686275 0.34901962 ... 0.27058825 0.26666668
        0.28235295]
       [0.3254902  0.3372549  0.33333334 ... 0.2627451  0.26666668
        0.25882354]]]
    
    
     [[[0.7254902  0.7058824  0.6745098  ... 0.6156863  0.59607846
        0.54901963]
       [0.7921569  0.69411767 0.63529414 ... 0.6039216  0.5764706
        0.5529412 ]
       [0.7176471  0.6392157  0.627451   ... 0.5764706  0.5764706
        0.5803922 ]
       ...
       [0.6901961  0.62352943 0.6156863  ... 0.37254903 0.31764707
        0.29803923]
       [0.6784314  0.6392157  0.67058825 ... 0.39215687 0.38431373
        0.36078432]
       [0.64705884 0.59607846 0.62352943 ... 0.47843137 0.5176471
        0.46666667]]]
    
    
     [[[0.8        0.8039216  0.8156863  ... 0.8352941  0.84705883
        0.84705883]
       [0.80784315 0.8156863  0.827451   ... 0.8352941  0.8235294
        0.827451  ]
       [0.7882353  0.7921569  0.80784315 ... 0.78431374 0.76862746
        0.76862746]
       ...
       [0.5058824  0.50980395 0.52156866 ... 0.45882353 0.5137255
        0.5294118 ]
       [0.49411765 0.49803922 0.5058824  ... 0.4627451  0.5176471
        0.5254902 ]
       [0.4862745  0.49019608 0.49803922 ... 0.4509804  0.49803922
        0.5058824 ]]]]
    <NDArray 256x1x32x32 @cpu(0)>
    
    [3 8 8 0 6 6 1 6 3 1 0 9 5 7 9 8 5 7 8 6 7 0 4 9 5 2 4 0 9 6 6 5 4 5 9 2 4
     1 9 5 4 6 5 6 0 9 3 9 7 6 9 8 0 3 8 8 7 7 4 6 7 3 6 3 6 2 1 2 3 7 2 6 8 8
     0 2 9 3 3 8 8 1 1 7 2 5 2 7 8 9 0 3 8 6 4 6 6 0 0 7 4 5 6 3 1 1 3 6 8 7 4
     0 6 2 1 3 0 4 2 7 8 3 1 2 8 0 8 3 5 2 4 1 8 9 1 2 9 7 2 9 6 5 6 3 8 7 6 2
     5 2 8 9 6 0 0 5 2 9 5 4 2 1 6 6 8 4 8 4 5 0 9 9 9 8 9 9 3 7 5 0 0 5 2 2 3
     8 6 3 4 0 5 8 0 1 7 2 8 8 7 8 5 1 8 7 1 3 0 5 7 9 7 4 5 9 8 0 7 9 8 2 7 6
     9 4 3 9 6 4 7 6 5 1 5 8 8 0 4 0 5 5 1 1 8 9 0 3 1 9 2 2 5 3 9 9 4 0]
    <NDArray 256 @cpu(0)>
    
    In [12]:
    from mxnet import gluon, init
    from mxnet.gluon import loss as gloss, nn
    
     
    In [13]:
    net = nn.Sequential()
    net.add(nn.Dense(10))
    net.initialize(init.Normal(sigma=0.01))
    
    In [14]:
    loss = gloss.SoftmaxCrossEntropyLoss()
    
    In [25]:
    trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.0001})
    
    In [26]:
    num_epochs = 100
    gb.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None,
                 None, trainer)
    
     
    epoch 1, loss 1.6195, train acc 0.457, test acc 0.410
    epoch 2, loss 1.6196, train acc 0.457, test acc 0.411
    epoch 3, loss 1.6181, train acc 0.457, test acc 0.411
    epoch 4, loss 1.6183, train acc 0.457, test acc 0.411
    epoch 5, loss 1.6191, train acc 0.457, test acc 0.410
    epoch 6, loss 1.6196, train acc 0.457, test acc 0.411
    epoch 7, loss 1.6189, train acc 0.457, test acc 0.410
    epoch 8, loss 1.6189, train acc 0.457, test acc 0.411
    epoch 9, loss 1.6183, train acc 0.457, test acc 0.410
    epoch 10, loss 1.6186, train acc 0.457, test acc 0.411
    epoch 11, loss 1.6182, train acc 0.457, test acc 0.410
    epoch 12, loss 1.6175, train acc 0.457, test acc 0.410
    epoch 13, loss 1.6181, train acc 0.457, test acc 0.410
    epoch 14, loss 1.6182, train acc 0.457, test acc 0.411
    epoch 15, loss 1.6192, train acc 0.457, test acc 0.410
    epoch 16, loss 1.6191, train acc 0.457, test acc 0.411
    epoch 17, loss 1.6182, train acc 0.457, test acc 0.410
    epoch 18, loss 1.6176, train acc 0.457, test acc 0.410
    epoch 19, loss 1.6175, train acc 0.458, test acc 0.410
    epoch 20, loss 1.6182, train acc 0.457, test acc 0.410
    epoch 21, loss 1.6178, train acc 0.457, test acc 0.410
    epoch 22, loss 1.6180, train acc 0.457, test acc 0.410
    epoch 23, loss 1.6178, train acc 0.457, test acc 0.411
    epoch 24, loss 1.6179, train acc 0.457, test acc 0.411
    epoch 25, loss 1.6178, train acc 0.457, test acc 0.411
    epoch 26, loss 1.6180, train acc 0.457, test acc 0.411
    epoch 27, loss 1.6181, train acc 0.457, test acc 0.410
    epoch 28, loss 1.6172, train acc 0.457, test acc 0.410
    epoch 29, loss 1.6177, train acc 0.457, test acc 0.411
    epoch 30, loss 1.6170, train acc 0.458, test acc 0.410
    epoch 31, loss 1.6162, train acc 0.458, test acc 0.410
    epoch 32, loss 1.6184, train acc 0.457, test acc 0.410
    epoch 33, loss 1.6175, train acc 0.457, test acc 0.410
    epoch 34, loss 1.6174, train acc 0.457, test acc 0.411
    epoch 35, loss 1.6173, train acc 0.457, test acc 0.411
    epoch 36, loss 1.6177, train acc 0.457, test acc 0.411
    epoch 37, loss 1.6174, train acc 0.457, test acc 0.410
    epoch 38, loss 1.6174, train acc 0.457, test acc 0.410
    epoch 39, loss 1.6171, train acc 0.457, test acc 0.411
    epoch 40, loss 1.6178, train acc 0.457, test acc 0.410
    epoch 41, loss 1.6173, train acc 0.457, test acc 0.410
    epoch 42, loss 1.6169, train acc 0.457, test acc 0.411
    epoch 43, loss 1.6166, train acc 0.457, test acc 0.410
    epoch 44, loss 1.6172, train acc 0.457, test acc 0.410
    epoch 45, loss 1.6166, train acc 0.457, test acc 0.410
    epoch 46, loss 1.6174, train acc 0.457, test acc 0.410
    epoch 47, loss 1.6170, train acc 0.457, test acc 0.410
    epoch 48, loss 1.6166, train acc 0.457, test acc 0.410
    epoch 49, loss 1.6165, train acc 0.457, test acc 0.410
    epoch 50, loss 1.6163, train acc 0.457, test acc 0.410
    epoch 51, loss 1.6167, train acc 0.457, test acc 0.410
    epoch 52, loss 1.6172, train acc 0.457, test acc 0.410
    epoch 53, loss 1.6163, train acc 0.458, test acc 0.410
    epoch 54, loss 1.6166, train acc 0.457, test acc 0.410
    epoch 55, loss 1.6163, train acc 0.457, test acc 0.410
    epoch 56, loss 1.6171, train acc 0.457, test acc 0.410
    epoch 57, loss 1.6170, train acc 0.457, test acc 0.410
    epoch 58, loss 1.6163, train acc 0.457, test acc 0.410
    epoch 59, loss 1.6160, train acc 0.458, test acc 0.410
    epoch 60, loss 1.6163, train acc 0.457, test acc 0.410
    epoch 61, loss 1.6165, train acc 0.457, test acc 0.410
    epoch 62, loss 1.6157, train acc 0.457, test acc 0.410
    epoch 63, loss 1.6169, train acc 0.457, test acc 0.410
    epoch 64, loss 1.6158, train acc 0.457, test acc 0.410
    epoch 65, loss 1.6167, train acc 0.457, test acc 0.410
    epoch 66, loss 1.6162, train acc 0.458, test acc 0.410
    epoch 67, loss 1.6167, train acc 0.457, test acc 0.410
    epoch 68, loss 1.6163, train acc 0.457, test acc 0.409
    epoch 69, loss 1.6170, train acc 0.457, test acc 0.410
    epoch 70, loss 1.6164, train acc 0.457, test acc 0.410
    epoch 71, loss 1.6166, train acc 0.457, test acc 0.410
    epoch 72, loss 1.6157, train acc 0.457, test acc 0.410
    epoch 73, loss 1.6159, train acc 0.457, test acc 0.410
    epoch 74, loss 1.6163, train acc 0.457, test acc 0.410
    epoch 75, loss 1.6162, train acc 0.457, test acc 0.410
    epoch 76, loss 1.6154, train acc 0.457, test acc 0.409
    epoch 77, loss 1.6161, train acc 0.457, test acc 0.410
    epoch 78, loss 1.6169, train acc 0.457, test acc 0.409
    epoch 79, loss 1.6154, train acc 0.457, test acc 0.409
    epoch 80, loss 1.6162, train acc 0.457, test acc 0.409
    epoch 81, loss 1.6163, train acc 0.457, test acc 0.410
    epoch 82, loss 1.6161, train acc 0.457, test acc 0.409
    epoch 83, loss 1.6156, train acc 0.457, test acc 0.410
    epoch 84, loss 1.6153, train acc 0.458, test acc 0.409
    epoch 85, loss 1.6159, train acc 0.457, test acc 0.409
    epoch 86, loss 1.6164, train acc 0.457, test acc 0.410
    epoch 87, loss 1.6154, train acc 0.457, test acc 0.410
    epoch 88, loss 1.6152, train acc 0.457, test acc 0.410
    epoch 89, loss 1.6154, train acc 0.457, test acc 0.410
    epoch 90, loss 1.6155, train acc 0.457, test acc 0.409
    epoch 91, loss 1.6160, train acc 0.458, test acc 0.409
    epoch 92, loss 1.6148, train acc 0.458, test acc 0.409
    epoch 93, loss 1.6156, train acc 0.457, test acc 0.409
    epoch 94, loss 1.6152, train acc 0.457, test acc 0.409
    epoch 95, loss 1.6157, train acc 0.458, test acc 0.410
    epoch 96, loss 1.6152, train acc 0.458, test acc 0.410
    epoch 97, loss 1.6152, train acc 0.457, test acc 0.410
    epoch 98, loss 1.6151, train acc 0.457, test acc 0.410
    epoch 99, loss 1.6150, train acc 0.457, test acc 0.409
    epoch 100, loss 1.6158, train acc 0.457, test acc 0.410
    
    In [17]:
    gb.train_ch3??
    
    In [ ]:
     

  • 相关阅读:
    学习python -- 第018天 os模块
    学习python -- 第017天 文件读写
    重看算法 -- 动态规划 最大子段和问题
    重看算法 -- 递归与分治
    学习python -- 第016天 模块
    学习python -- 第016天 浅拷贝和深拷贝
    网络字节序、主机字节序(摘抄)
    C++/C常量
    结构化程序设计
    循环(高质量4.10)
  • 原文地址:https://www.cnblogs.com/TreeDream/p/10020362.html
Copyright © 2020-2023  润新知