Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 15880 | Accepted: 5778 |
Description
You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.
Input
The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the
query.
The last test case is followed by a line containing a single 0.
Output
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
Sample Input
10 3 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0
Sample Output
1 4 3
题目大意:求区间内重复次数最多的元素所重复的次数。
思路:由于数据的范围很大,所以是一道很典型的RMQ,由于数组保证非降序,所以相同元素一定排列在一起,这样我们就可以将相同元素划分在一个区间内,用一个num数组储存第i个元素在新划分后的第一个小区间,left数组储存第i个小区间的左端点,right数组储存右端点,res存第i个区间有多少个元素,这样在求解时如果发现输入的l和r值在一个区间内,答案即为r-l+1,若不在一个区间内,答案即为right[num[l]]-l+1,r-left[num[r]]+1,RMQ(num[l]+1,num[r]-1))三者中的最大值。
代码:
#include <cstdio> #include <iostream> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #define N 100010 using namespace std; int num[N],lef[N],rig[N],res[N],dp[N][20],cnt,n; int maxn(int a,int b,int c) { return max(max(a,b),c); } void RMQ_init() { memset(dp,0,sizeof(dp)); for(int i=1; i<=cnt; i++) dp[i][0]=res[i]; for(int j=1; (1<<j)<=cnt; j++) for(int i=1; i+(1<<j-1)<=cnt; i++) dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]); } int RMQ(int L,int R) { if(L>R) return 0; int k=0; while((1<<(k+1))<=R-L+1) k++; return max(dp[L][k],dp[R-(1<<k)+1][k]); } int main() { int q,temp,before; while(~scanf("%d",&n)&&n) { scanf("%d",&q); cnt=0; memset(num,0,sizeof(num)); memset(lef,0,sizeof(lef)); memset(rig,0,sizeof(rig)); memset(res,0,sizeof(res)); for(int i=1; i<=n; i++) { scanf("%d",&temp); if(i==1) { ++cnt; lef[cnt]=1; before=temp; } if(temp==before) { num[i]=cnt; res[cnt]++; rig[cnt]++; } else { num[i]=++cnt; res[cnt]++; lef[cnt]=rig[cnt]=i; before=temp; } } RMQ_init(); while(q--) { int l,r; scanf("%d%d",&l,&r); if(num[l]==num[r]) { printf("%d ",r-l+1); continue; } printf("%d ",maxn(rig[num[l]]-l+1,r-lef[num[r]]+1,RMQ(num[l]+1,num[r]-1))); } } }