1087: [SCOI2005]互不侵犯King
Time Limit: 10 SecDescription
在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。
Input
只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)
Output
方案数。
Sample Input
3 2
Sample Output
16
【题解】
我是打表做的TAT
1 #include <iostream> 2 using namespace std; 3 const int q[9][81] = 4 { 5 {1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 6 {4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 7 {9,16,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 8 {16,78,140,79,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 9 {25,228,964,1987,1974,978,242,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 10 {36,520,3920,16834,42368,62266,51504,21792,3600,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 11 {49,1020,11860,85275,397014,1220298,2484382,3324193,2882737,1601292,569818,129657,18389,1520,64,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 12 {64,1806,29708,317471,2326320,12033330,44601420,119138166,229095676,314949564,305560392,204883338,91802548,25952226,4142000,281571,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 13 {81,2968,65240,962089,10087628,77784658,450193818,1979541332,6655170642,17143061738,33787564116,50734210126,57647295377,49138545860,31122500764,14518795348,4959383037,1237072414,224463798,29275410,2673322,163088,6150,125,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 14 }; 15 int main() { 16 short n,k; 17 cin>>n>>k; 18 if(!((n==9&&k==13)||(n==9&&k==15))) cout<<q[n-1][k-1]; 19 else { 20 if(n==9&&k==13) cout<<57647295377; 21 else cout<<31122500764; 22 } 23 return 0; 24 }
n+e的题解:
首先,我们看到n是非常小的,这就让我们想到了两种做法:搜索与状压DP。
不过由于本题中方案数可能非常多(例如n = k = 9时方案数要开long long才能存得下),所以搜索是不可行的。
我们来考虑状压DP。首先,我们可以先进行一个预处理,把本身就不合法的状态筛掉,再把可以互相转移的状态存起来(可以考虑使用邻接表)。预处理之后,我们会发现,不合法的状态被筛掉很多,而所有的转移关系最多也只有3500个左右。
我们令f[i][j][k]表示直到第i行放了j个国王,状态为k的方案数,那么转移就是
f[i][j][k] = sum(f[i][j-cnt(k)][k']),其中,cnt[k]表示k的二进制表示有几个1,k'表示可以从k'转移到k的状态。
由于转移关系很少,而不合法方案数又筛掉很多,所以4层for也可以AC。
就用状态压缩来搞定。