• 南邮NOJ鸡兔同笼问题


    鸡兔同笼

    时间限制(普通/Java) : 1000 MS/ 3000 MS          运行内存限制 : 65536 KByte
    总提交 : 1836            测试通过 : 306 

    题目描述

        这是一个代代相传的古老问题~

        已知鸡和兔的总数量为n,总腿数为m,输入n和m,输出兔的数目。如果无解,则输出“No answer” (不要引号)



    输入

    第一行是一个正整数T,表示测试用例数目,1<=T<=100000;

    对于每个测试样例,输入两个整数n,m,分别表示头数与腿数,( 0<=n,m<=100 )

    输出

    对于每个测试用例,输出一行,依次包含:

    l   “Case #: ”,#表示序号,注意冒号后有一个空格

    l      兔的数目,如果无解则输出"No answer"


    样例输入

    2
    14 32
    10 16

    样例输出

    Case 1: 2
    Case 2: No answer

    #include<cstdio>
    int main()
    {
        int p,c=0;
        scanf("%d",&p);
        while(p--)
        {
            int n,m,y;
            scanf("%d%d",&n,&m);
            printf("Case %d: ",++c);
            y=m/2-n;
            if(m%2==0&&y>=0&&(4*n-m)>=0)
            {
                 printf("%d
    ",y);
            }
            else
            {
               printf("No answer
    ");
            }
        }
        return 0;
    }
    

    主要是if条件的控制,好几次WA提示,想不通,只有y>=0&&4*n-m的判断条件,后来加上m%2==0就过了。

    总之还是控制条件的问题。

    版权声明:本文为博主原创文章,未经博主允许不得转载。

  • 相关阅读:
    【NOIP2016提高A组集训第14场11.12】随机游走
    poj2378 树形DP
    简单博弈论总结加例题解析
    uva11426 欧拉函数应用
    poj3090欧拉函数求和
    lightOJ1370 欧拉函数性质
    hdu4497 正整数唯一分解定理应用
    hdu1215 正整数唯一分解定理应用
    lightoj 1236 正整数唯一分解定理
    素数筛两种方法
  • 原文地址:https://www.cnblogs.com/Tobyuyu/p/4965734.html
Copyright © 2020-2023  润新知