求至少可重叠重复(K)次的最长子串的长度。
解法为二分长度后对height数组分组。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <set>
#define DBG(x) cerr << #x << " = " << x << endl
using namespace std;
typedef long long LL;
const int maxn = 2000000 + 16;
/*********************************************
*********************
** 后缀数组 Suffix Array
** INIT:solver.call_fun(char* s);
** CALL: solver.lcp(int i,int j); //后缀 i 与后缀 j 的最
长公共前缀
** SP_USE: solver.LCS(char *s1,char* s2); //最长公
共字串
**********************************************
********************/
struct SuffixArray {
int r[maxn];
int sa[maxn], rank[maxn], height[maxn];
int t[maxn], t2[maxn], c[maxn], n;
int m;//模板长度
void init(int s[], int n) {
this->n = n;
for (int i = 0; i < n; i++) r[i] = int(s[i]);
m = 1000000 + 16;
}
int cmp(int *r, int a, int b, int l) {
return r[a] == r[b] && r[a + l] == r[b + l];
}
/**
字符要先转化为正整数
待排序的字符串放在 r[]数组中,从 r[0]到 r[n-1],
长度为 n,且最大值小于 m。
所有的 r[i]都大于 0,r[n]无意义算法中置 0
函数结束后,结果放在 sa[]数组中(名次从 1..n),
从 sa[1]到 sa[n]。s[0]无意义
**/
void build_sa() {
int i, k, p, *x = t, *y = t2;
r[n++] = 0;
for (i = 0; i < m; i++) c[i] = 0;
for (i = 0; i < n; i++) c[x[i] = r[i]]++;
for (i = 1; i < m; i++) c[i] += c[i - 1];
for (i = n - 1; i >= 0; i--) sa[--c[x[i]]] = i;
for (k = 1, p = 1; k < n; k *= 2, m = p) {
for (p = 0, i = n - k; i < n; i++) y[p++] = i;
for (i = 0; i < n; i++) if (sa[i] >= k)
y[p++] = sa[i] - k;
for (i = 0; i < m; i++) c[i] = 0;
for (i = 0; i < n; i++) c[x[y[i]]]++;
for (i = 1; i < m; i++) c[i] += c[i - 1];
for (i = n - 1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = 1;
x[sa[0]] = 0;
for (i = 1; i < n; i++)
x[sa[i]] = cmp(y, sa[i - 1], sa[i], k) ? p - 1 : p++;
}
n--;
}
/**
height[2..n]:height[i]保存的是 lcp(sa[i],sa[i-1])
rank[0..n-1]:rank[i]保存的是原串中 suffix[i]的名
次
**/
void getHeight() {
int i, j, k = 0;
for (i = 1; i <= n; i++) rank[sa[i]] = i;
for (i = 0; i < n; i++) {
if (k) k--;
j = sa[rank[i] - 1];
while (r[i + k] == r[j + k]) k++;
height[rank[i]] = k;
}
}
int d[maxn][20];
//元素从 1 编号到 n
void RMQ_init(int A[], int n) {
for (int i = 1; i <= n; i++) d[i][0] = A[i];
for (int j = 1; (1 << j) <= n; j++)
for (int i = 1; i + (1 << (j - 1)) <= n; i++)
d[i][j] = min(d[i][j - 1], d[i + (1 << (j - 1))][j - 1]);
}
int RMQ(int L, int R) {
int k = 0;
L = rank[L];
R = rank[R];
if(L > R) swap(L, R);
L++;
while ((1 << (k + 1)) <= R - L + 1) k++;
return min(d[L][k], d[R - (1 << k) + 1][k]);
}
void LCP_init() {
RMQ_init(height, n);
}
int lcp(int i, int j) {
if (rank[i] > rank[j]) swap(i, j);
return RMQ(rank[i] + 1, rank[j]);
}
void call_fun(int s[], int n) {
init(s, n);//初始化后缀数组
build_sa();//构造后缀数组 sa
getHeight();//计算 height 与 rank
LCP_init();//初始化 RMQ
}
int so(int n) {
int ans = 0;
for(int i = 1; i <= n; i++) {
ans += (n - sa[i] - height[i]);
}
return ans;
}
} solver;
int a[maxn];
int n, k;
bool fuck(int x) {
int sum = 0;
for(int i = 2; i <= n; ++i) {
if(solver.height[i] >= x) ++sum;
else {
if(sum + 1 >= k) return true;
sum = 0;
}
}
if(sum + 1 >= k) return true;
return false;
}
int main(int argc, char **argv) {
while(~scanf("%d%d", &n, &k)) {
for(int i = 0; i < n; ++i) scanf("%d", &a[i]);
solver.call_fun(a, n);
int res = 0, L = 0, R = n;
while(L <= R) {
int mid = L + R >> 1;
if(fuck(mid)) res = mid, L = mid + 1;
else R = mid - 1;
}
printf("%d
", res);
}
return 0;
}