Problem Description
Given two positive integers a and b,find suitable X and Y to meet the conditions:
X+Y=a
Least Common Multiple (X, Y) =b
Input
Input includes multiple sets of test data.Each test data occupies one line,including two positive integers a(1≤a≤2*10^4),b(1≤b≤10^9),and their meanings are shown in the description.Contains most of the 12W test cases.
Output
For each set of input data,output a line of two integers,representing X, Y.If you cannot find such X and Y,output one line of "No Solution"(without quotation).
题意:给你两个数a,b如果能找到两个数x,y使得x+y=a而且x,y的最小公倍数为b。
由于题目给出数据组数下、较多有12w组所以遍历会超时,所以要想办法直接求值。
根据题意能得到两个公式:
(1)x+y=a;
(2)x*y=b*k;(k为x,y的最大公约数)
显然有一个k在这里不好求答案所以想办法把k除掉。
将(1)左右都除k得到
(3)x/k+y/k=a/k;
再将(2)左右都除k得到
(4)(x/k)*(y/k)=b/k;
由于k是x,y的最大公约数,所以x/k,与y/k互质。所以a/k,与b/k也是互质。
所以问题就简化到求
i+j=a/gcd(a,b),i*j=b/gcd(a,b);
i和j的解。
#include <iostream> #include <cmath> using namespace std; int X , Y; int gcd(int a , int b) { return b > 0 ? gcd(b , a % b) : a; } int cal(int a , int b , int c) { if(a * a - 4 * b < 0) return 0; int gg = a * a - 4 * b; int fff = sqrt(gg); if(gg != fff * fff) { Y = -1 , X = -1; return 0; } X = (a + fff); Y = (a - fff); if(X % 2 == 0 && Y % 2 == 0) { X /= 2; Y /= 2; return 1; } else { X = -1; Y = -1; return 0; } } int main() { int a , b; while(cin >> a >> b) { int c = gcd(a , b); X = -1 , Y = -1; if(cal(a / c , b / c , c) && X != -1 && Y != -1) { cout << min(X , Y) * c << ' ' << max(X , Y) * c << endl; } else { cout << "No Solution" << endl; } } return 0; }