起源:Hadoop是google 的集群系统的开源实现
--Google集群系统,:GFS(Google file system),MapReduce,BigTable(严格意义上讲,这个不是hadoop的东西)
--Hadoop 主要由 HDFS(Hadoop Distributed file system ---hadoop文件分布式系统)MapReduce和HBase组成
两大核心:
MapReduce : 组成 Map进行任务的分解,Reduce进行结果的汇总
HDFS :组成 NameNode ,DataNode ,Client
HTFS讲解:
通常的,我们习惯使用的就是关系型数据库,比如mysql , sql server , oracle等等,但是这些数据库都是有局限性的,
数据量过大时候,也需要更换,总不能一直更换吧?所以,这就延伸出了,hadoop(当然,这个东西的起源也就是因为这个,当时是用作
数据采集的,但是发现数据量过大,以至于无法处理,所以 hadoop这东西就出来了,也是被 挤出来的一个东西)
大数据:所谓的大数据,简单的可以这么理解为,数据集的大小超过了数据库软件和现有工具的处理 的范围了,所以,很多人整天喊着
大数据大数据,到底多大的数据才是大数据?(这里有点儿讽刺的意味),每次一说出来总被吓一跳,让人觉得很厉害的样子。
Hadoop大数据 与 传统关系型数据库的 对比:
对比一
关系型数据(库) 大数据: 数据量方面: GB TB及其以下级别数据量 基本是TB PB级别的数据 数据增长方面: 数据增长不快 持续、实时不定量增长数据 结构: 主要是关系型,有具体的数据结构非结构化,半结构化,多维数据 存在的实际价值: 统计和报表 数据挖掘和数据分析
对比二:硬件(环境方面)
比较直观的理解就是,关系型数据库往往就单台服务器,所以不论从扩展性或者是 性能方面 都多少存在问题,可能有人说,微软有数据库错误集群
功能啊,这个是不假,但是那不是真正意义上的集群方式。扩展性更不用说了,就一个服务器,而且数据库只能指定具体的数据类型才可以
Hadoop项目(子集):
Core: core是一套分布式文件系统,同时支持Map_Reduce的计算框架
Avro: 定义了支持大数据应用的数据格式,虽然是JAVA编写的,但是提供了对多种语言的支持
HDFS:Hadoop分布式文件系统
Map/Reduce : 是一种使用比较简易的框架,可在多个机器集群上,以一种可靠的容错方式处理 TB级别的数据集
ZooKeeper: 高可用的 可靠的分布式协同系统
PIG: (目前使用的越来越少)
Hive: 为提供简单的数据操作设计的 新的 分布式数据仓库。它提供了HiveSQL语言,类似于sql语句一样进行数据查询
HBase: 建立在Hadoop Core之上的提供一个可扩展的 数据系统
Flume: 一个分布式、可靠、高可用的海量日志集合的系统,支持在系统中定制各类数据发送方,用于数据收集
Mahout: 是一种具有可扩充能力的机器学习类
Sqoop: 是Apache 下用于RDBMS 和HDFS互相导数据的工具
(以上只有绿色部分的内容才是 hadoop的本身的内容,其他的东西做扩展使用)
Hadoop获取
http://hadoop.apache.org
当然,可以看到很多版本的 hadoop的文件,这里先使用 1.2.X 的版本,先从基础开始嘛,然后后面再使用 2.X 的版本
1.2.X的版本获取链接 https://archive.apache.org/dist/hadoop/common/hadoop-1.2.1/ 选择使用 .tar的 文件包,因为里面文件比较全,
包含相关文档等
HTFS介绍
htfs做到了可靠性的创建了多份数据块儿(data blocks),的复制(replicas),并将它们放在服务器群的计算节点当中(ompute nodes),
MapReduce就可以在他们所在的及诶点上处理数据了
HTFS结构:
namenode 和 datanode的节点的关系,注意看,我上面写的,datanodes我写的是复数形式,这里是因为
NameNode DataNodes存储元数据(文件的大小,权限、版本等等) 存储文件内容 缘数据保存在内存中(当然磁盘中也有,只是他是先加载到物理磁盘,运行时在读取到内存)文件系统保存在磁盘中 保存文件,block,datanode之间的映射关系 维护了blockid到datanode的本地文件的映射关系是一对多的关系,一个namenode的对应多一个datanodeHTFS的运行机制:
HTFS数据存储单元(Block - 存放到 datanode上):
① 文件被分割成固定大小的数据块,同时分布在多个 数据存储单元中(作为副本),副本越多就会减少丢失率,默认情况下,每个block
② 默认都会有三个副本文件,要存放在 集群服务器中的不同机器硬盘上
③ block 工作单元被创建之后,大小固定是多大就是多大,不能在更改size,但是副本的个数,可以更改;
④ 如果集群中,摸一个block的节点挂掉了,这是,会自动创建一个新的副本block,将之前的数据,从另外的正常运行的block中拷贝文件过去
HTFS的 NameNode:
a) 功能是,接受客户端的读写服务
b) 保存的的metadata信息包括:① 文件owership 和 permissions ; ② 文件包含哪些模块 ; ③ Block保存在哪个 DataNode(由 dataNode启动时 上报给 nameNode,由namenode加载到内存)
c) metadata存储到磁盘上的文件名称为 fsimage,
d) Block的位置不会保存到 fsimage
e) edits 记录时,metadata的操作日志
HTFS 的读流程:(图片来自互联网)
client先open从namenode中获取文件的名称 ,上面有说过,数据的存储是存储在 datanodes中的,而namenode中存储的是 元数据,也就是数据的相关信息;
然后客户端根据获取的文件名称,从datanodes中读取数据。
HTFS 文件权限:
与LINUX文件权限类似
--- r:read ; w:write; x:execute ,权限 x 对于文件忽略,对文件夹表示 是否允许访问其他内容--- 如果LINUX 系统用户 张三 使用hadoop 创建一个文件,那么这个文件在HDFS中owner就是 张三--- HDFS 的权限目的:不做密码的认证,说白了,你使用的用户名,这个用户就拥有所有权限Hadoop 的安全模式:
注:该状态下,不能够对HDFS 进行操作,比如读写操作,你只能看着,这个过程可以理解就是,datanode数据加载过程中到 向namenode汇报的过程,这个阶段需要时间,这个时间段就是 安全的模式,当然可以强制终止,但是强制的结果就是,导致数据的丢失。所以不建议。
namenode启动的时候,将fsimage的映像文件加载到内存,