• Sum It Up


    Sum It Up
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 6702   Accepted: 3489

    Description

    Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n = 6, and the list is [4, 3, 2, 2, 1, 1], then there are four different sums that equal 4: 4, 3+1, 2+2, and 2+1+1. (A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

    Input

    The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x 1 , . . . , x n . If n = 0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12 (inclusive), and x 1 , . . . , x n will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.

    Output

    For each test case, first output a line containing `Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line `NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distinct; the same sum cannot appear twice.

    Sample Input

    4 6 4 3 2 2 1 1
    5 3 2 1 1
    400 12 50 50 50 50 50 50 25 25 25 25 25 25
    0 0

    Sample Output

    Sums of 4:
    4
    3+1
    2+2
    2+1+1
    Sums of 5:
    NONE
    Sums of 400:
    50+50+50+50+50+50+25+25+25+25
    50+50+50+50+50+25+25+25+25+25+25
    

    Source

    题意:在给定一序列中随意找若干数只要和等于一给定数就输出,当然要把所有组合和是的找出来,不能重。dfs找数~
     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 #include<algorithm>
     5 
     6 using namespace std;
     7 #define N 1100
     8 
     9 int n, m, flag;
    10 int a[N], b[N];
    11 
    12 int cmp(int a, int b)
    13 {
    14     return a > b;
    15 }
    16 void dfs(int p, int ans, int s)   // p存当前加的数的下标,ans存要加入b数组的下标,s存当前的加的数的和~
    17 {
    18     if(s == n)  //找到输出
    19     {
    20         for(int i = 0; i < ans; i++)
    21         {
    22             if(i)
    23                 printf("+");
    24             printf("%d", b[i]);
    25             flag = 1;
    26         }
    27         puts("");
    28         return ;
    29     }
    30     else
    31     {
    32         for(int i = p; i < m; i++)  // 把每个点当第一个点往后相加,遍历
    33         {
    34             if(s+a[i] <= n)  // 继续递归
    35             {
    36                 b[ans] = a[i];   // 把找到的数存b数组
    37                 dfs(i+1, ans+1, s+a[i]);  
    38                 while(i < m && a[i] == a[i+1])   // 去重
    39                     i++;
    40             }
    41         }
    42     }
    43 }
    44 int main()
    45 {
    46     while(scanf("%d%d", &n, &m), n+m)
    47     {
    48         flag = 0;
    49         for(int i = 0; i < m; i++)
    50             scanf("%d", &a[i]);
    51         sort(a, a+m, cmp);   // 排序,从大开始找
    52         printf("Sums of %d:
    ", n);
    53         dfs(0, 0, 0);
    54         if(!flag)
    55             printf("NONE
    ");
    56     }
    57     return 0;
    58 }

    革命尚未成功,同志仍需努力………………………………………………………………

    让未来到来 让过去过去
  • 相关阅读:
    通过xshell在本地win主机和远程linux主机传输文件
    CentOS7.4搭建ftp服务
    CentOS7.4中配置jdk环境
    spring AOP学习笔记
    java代码连接oracle数据库的方法
    通过xshell上传和下载文件
    java设计模式简述
    本地项目文件通过git提交到GitHub上
    centos7中oracle数据库安装和卸载
    centos7远程服务器中redis的安装与java连接
  • 原文地址:https://www.cnblogs.com/Tinamei/p/4738575.html
Copyright © 2020-2023  润新知