闲扯
蒟蒻持续学习数学中。。。
题面
Solution
由条件 (2) :(lcm(x,b_0)=b_1) 可以得出 (xmid b_1) 。
我们可以枚举 (b_1) 的约数,如果同时满足条件 (1) 和条件 (2) ,那么我们就将答案加一。
由试除法可知,枚举一个数的的所有约数时间复杂度为 (O(sqrt{N})) 。由于有多组数据,且还需求 (gcd) ,所以总的复杂度为 (O(Ncdotsqrt{b_1}cdot log{b_1})) 。
加上读入优化和输出优化,可以很快的跑过去。
Code
#include<bits/stdc++.h>
#define del(a,i) memset(a,i,sizeof(a))
#define ll long long
#define inl inline
#define il inl void
#define it inl int
#define ill inl ll
#define re register
#define ri re int
#define rl re ll
#define mid ((l+r)>>1)
#define lowbit(x) (x&(-x))
#define INF 0x3f3f3f3f
using namespace std;
template<class T>il read(T &x){
int f=1;char k=getchar();x=0;
for(;k>'9'||k<'0';k=getchar()) if(k=='-') f=-1;
for(;k>='0'&&k<='9';k=getchar()) x=(x<<3)+(x<<1)+k-'0';
x*=f;
}
template<class T>il print(T x){
if(x/10) print(x/10);
putchar(x%10+'0');
}
ll mul(ll a,ll b,ll mod){long double c=1.;return (a*b-(ll)(c*a*b/mod)*mod)%mod;}
it qpow(int x,int m,int mod){
int res=1,bas=x%mod;
while(m){
if(m&1) res=(res*bas)%mod;
bas=(bas*bas)%mod,m>>=1;
}
return res%mod;
}
int n,a,b,c,d,ans;
it gcd(int x,int y){return y==0?x:gcd(y,x%y);}
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
read(n);
while(n--){
read(a),read(b),read(c),read(d),ans=0;
for(ri i=1;i*i<=d;++i){
if(d%i) continue;
if(gcd(i,a)==b&&1ll*i*c/gcd(i,c)==d) ans++;
if(i*i==d) break;
if(gcd(d/i,a)==b&&1ll*d/i*c/gcd(d/i,c)==d) ans++;
}
print(ans);puts("");
}
return 0;
}
总结
灵活应用 (amid lcm(a,b)) 这个结论。