Give a set S, |S| = n, then how many ordered set group (S1, S2, ..., Sk) satisfies S1 ∩ S2 ∩ ... ∩ Sk = ∅. (Si is a subset of S, (1 <= i <= k))
Input
The input contains multiple cases, each case have 2 integers in one line represent n and k(1 <= k <= n <= 231-1), proceed to the end of the file.
Output
Output the total number mod 1000000007.
Sample Input
1 1 2 2
Sample Output
1 9
题意:
个数为n的集合,从中选出K个子集使得他们的交集为空的个数。
子集可以重复选
考虑1个元素
它在k子集里的数目为2^k
其中有一种是k个子集都有这个元素,他们这k个子集的交集就不为空
所以1个元素k个子集交集为空的数目 有(2^k)-1 种
那么n个元素就是((2^k)-1)^n
#include<cstdio> using namespace std; typedef long long LL; const LL mod=1000000007; LL n,k; LL pow(LL a,LL b) { LL r=1; while(b) { if(b&1) r*=a,r%=mod; b>>=1; a*=a; a%=mod; } return r; } int main() { while(scanf("%lld%lld",&n,&k)!=EOF) printf("%lld ",pow(pow(2,k)-1,n)); }