• poj 2976 Dropping tests


    Dropping tests
    Time Limit: 1000MS   Memory Limit: 65536K
         

    Description

    In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

    .

    Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

    Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

    Input

    The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains npositive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

    Output

    For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

    Sample Input

    3 1
    5 0 2
    5 1 6
    4 2
    1 2 7 9
    5 6 7 9
    0 0

    Sample Output

    83
    100

    Hint

    To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

    Source

    题意:n种数,每种数有2个属性,a,b ,选出n-k种数,最大化∑A(n-k)/∑B(n-k)
    01分数规划模板题
    转换:令∑Ak/∑Bk=ans ,最大化ans
    假设只有2个数
    (A1+A2)/(B1+B2)=ans
    转化:A1+A2=(B1+B2)*ans
    去括号、移项:A1-B1*ans+A2-B2*ans=0
    假设指定一个f,设ans为最终答案
    若f<ans,那么式子>0
    若f>ans,那么式子<0
    所以二分ans,每次取出前k个最大(Ai-Bi*ans)判断是否>0
    若>0,移动下界,否则,移动上界
    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    int n,k;
    double a[1001],b[1001],tmp[1001];
    double l,r,mid,p,ans;
    int main()
    {
        while(scanf("%d%d",&n,&k)!=EOF)
        {
            if(!n) break;
            for(int i=1;i<=n;i++) scanf("%lf",&a[i]);
            for(int i=1;i<=n;i++) scanf("%lf",&b[i]);
            l=0;r=1;
            while(fabs(l-r)>0.0001)
            {
                mid=(l+r)/2;p=0;
                for(int i=1;i<=n;i++) tmp[i]=a[i]-mid*b[i];
                sort(tmp+1,tmp+n+1);
                for(int i=n;i>k;i--) p+=tmp[i];
                if(p>0) l=mid;
                else r=mid;
            }
            printf("%.0lf
    ",l*100);
        }
    }

    然而换了换二分姿势就错了,错误1:ans二分前ans要更新为0,防止不能二分

                                        错误2:0.0001精度太小,卡到0.0000001就过了

    至于为啥上面0.0001就能A,玄学

    以后想着精度卡6、7位就好

    错误代码:(就是用新的变量ans,当式子>0时,更新ans,最后输出ans)

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    int n,k;
    double a[1001],b[1001],tmp[1001];
    double l,r,mid,p,ans;
    int main()
    {
        while(scanf("%d%d",&n,&k)!=EOF)
        {
            if(!n) break;
            for(int i=1;i<=n;i++) scanf("%lf",&a[i]);
            for(int i=1;i<=n;i++) scanf("%lf",&b[i]);
            l=0;r=1;
            while(fabs(l-r)>0.0001)
            {
                mid=(l+r)/2;p=0;
                for(int i=1;i<=n;i++) tmp[i]=a[i]-mid*b[i];
                sort(tmp+1,tmp+n+1);
                for(int i=n;i>k;i--) p+=tmp[i];
                if(p>=0) {ans=mid;l=mid+0.0001;}
                else r=mid-0.0001;
            }
            printf("%.0lf
    ",ans*100);
        }
    }
  • 相关阅读:
    在IIS上搭建WebSocket服务器(三)
    在IIS上搭建WebSocket服务器(二)
    在IIS上搭建WebSocket服务器(一)
    RDIFramework.NET ━ .NET快速信息化系统开发框架 V3.2->Web版本模块管理界面新增模块排序功能
    C#在WinForm中使用WebKit传递js对象实现与网页交互的方法
    c#用webkit内核支持html5
    .NET下WebBrowser的一个BUG以及其替代品——geckofx
    HTML5浏览器嵌入窗口程序解决方案
    saprk里面的action
    解释为什么word2vec也被称作deep learning
  • 原文地址:https://www.cnblogs.com/TheRoadToTheGold/p/6546981.html
Copyright © 2020-2023  润新知