• hdu 4629 Burning


    acm.hdu.edu.cn/showproblem.php?pid=4629

    题意:

    给出n个三角形,分别求出他们相交i次的面积,i∈[1,n]

    在求面积并的基础上修改

    求面积并:https://www.cnblogs.com/TheRoadToTheGold/p/12221288.html

    当计算中位线的长度时,把端点离散化,利用前缀和差分计算覆盖次数

    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    
    using namespace std;
    
    const double eps=1e-10;
    const int inf=101;
    
    int n;
    struct Point
    {
        double x,y;
        
        Point(double x_=0,double y_=0) : x(x_),y(y_) {}    
    
    }tri[51][4],seg[51];
    
    typedef Point Vector;
    
    double px[25001],ans[51];
    double has[25001];
    int cnt[101];
    
    Point operator - (Point A,Point B) { return Point(A.x-B.x,A.y-B.y); }
    Vector operator + (Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); }
    Vector operator * (Vector A,double p) { return Vector(A.x*p,A.y*p); }
    
    int dcmp(double x)
    {
        if(fabs(x)<eps) return 0;
        return x<0 ? -1 : 1;
    }
    
    double Cross(Vector A,Vector B)
    {
        return A.x*B.y-A.y*B.x;
    }
    
    bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
    {
        double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
        return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
    }
    
    Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
    {
        Vector u=P-Q;
        double t=Cross(w,u)/Cross(v,w);
        return P+v*t;
    }    
    
    void cal(double line,double h)
    {
        Point up(line,inf),down(line,-inf);
        int m=0,k,tot=0;
        double py[3];
        for(int i=1;i<=n;++i)
        {
            k=0;
            for(int j=0;j<3;++j)
                if(SegmentProperIntersection(tri[i][j],tri[i][j+1],up,down))
                    py[++k]=GetLineIntersection(tri[i][j],tri[i][j+1]-tri[i][j],up,up-down).y;
            if(k) 
            {
                seg[++m]=Point(min(py[1],py[2]),max(py[1],py[2]));
                has[++tot]=py[1];
                has[++tot]=py[2];
            }
        }
        sort(has+1,has+tot+1);
        int opl,opr;
        memset(cnt,0,sizeof(cnt));
        for(int i=1;i<=m;++i)
        {
            opl=lower_bound(has+1,has+tot+1,seg[i].x)-has;
            opr=lower_bound(has+1,has+tot+1,seg[i].y)-has;
            cnt[opl]++;
            cnt[opr]--;
        }
        for(int i=1;i<=tot;++i) cnt[i]+=cnt[i-1];
        for(int i=1;i<tot;++i) ans[cnt[i]]+=(has[i+1]-has[i])*h;
    }
    
    int main()
    {
        int T,m;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d",&n);
            m=0;
            for(int i=1;i<=n;++i)
            {
                for(int j=0;j<3;++j) 
                {
                    scanf("%lf%lf",&tri[i][j].x,&tri[i][j].y);
                    px[++m]=tri[i][j].x;
                }
                tri[i][3]=tri[i][0];
            }
            for(int i=1;i<n;++i)
                for(int j=i+1;j<=n;++j)
                    for(int k=0;k<3;++k)
                        for(int l=0;l<3;++l)
                            if(SegmentProperIntersection(tri[i][k],tri[i][k+1],tri[j][l],tri[j][l+1]))
                                px[++m]=GetLineIntersection(tri[i][k],tri[i][k+1]-tri[i][k],tri[j][l],tri[j][l+1]-tri[j][l]).x;
            sort(px+1,px+m+1);
            memset(ans,0,sizeof(ans));
            for(int i=2;i<=m;++i)
                if(dcmp(px[i]-px[i-1]))
                    cal((px[i]+px[i-1])/2,px[i]-px[i-1]);
            for(int i=1;i<=n;++i) printf("%.10lf
    ",ans[i]);
        }
        return 0;
    }

    Burning

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 705    Accepted Submission(s): 283
    Special Judge


    Problem Description
    The sky is BURNING,and you find there are n triangles on a plane.
    For every point p,if there's exactly k triangles contains it,then define it's thickness as k.
    For every i from 1 to n,calculate the area of all points whose thickness is i.
     
    Input
    The first line contains integer T(T <= 5),denote the number of the test cases.
    For each test cases,the first line contains integer n(1 <= n <= 50),denote the number of the triangles.
    Then n lines follows,each line contains six integers x1, y1, x2, y2, x3, y3, denote there's a triangle with vertices (x1, y1), (x2, y2), (x3, y3).
    0 <= xi, yi <= 100 for every i.
     
    Output
    For each test cases,print n lines,the i-th is the total area for thickness i.
    The answer will be considered correct if its absolute error doesn't exceed 10-4.
     
    Sample Input
    1 5 29 84 74 64 53 66 41 49 60 2 23 38 47 21 3 58 89 29 70 81 7 16 59 14 64 62 63 2 30 67
     
    Sample Output
    1348.5621251916 706.2758371223 540.0414504206 9.9404623255 0.0000000000
    Hint
    Triangle can be degenerated(3 points on a line,even 3 points are the same).
     
    Author
    WJMZBMR
     
    Source
  • 相关阅读:
    CommandLine
    eclipse创建java和web工程
    rabbitmq安装(ubuntu)
    vue搭建手顺
    docker配置仓库源
    spark基本概念整理
    Vue整合d3.v5.js制作--柱状图(rect)
    Vue整合d3.v5.js制作--折线图(line)
    k8s强制删除pod
    踩坑ios H5
  • 原文地址:https://www.cnblogs.com/TheRoadToTheGold/p/12222507.html
Copyright © 2020-2023  润新知