• 霍夫变换


    在图片处理中,霍夫变换主要是用来检测图片中的几何形状,包括直线、圆、椭圆等。在skimage中,霍夫变换是放在tranform模块内。

    一 霍夫线变换

     对于平面中的一条直线,在笛卡尔坐标系中,可用y=mx+b来表示,其中m为斜率,b为截距。但是如果直线是一条垂直线,则m为无穷大,所有通常我们在另一坐标系中表示直线,即极坐标系下的r=xcos(theta)+ysin(theta)。即可用(r,theta)来表示一条直线。其中r为该直线到原点的距离,theta为该直线的垂线与x轴的夹角。如下图所示。

    对于一个给定的点(x0,y0), 我们在极坐标下绘出所有通过它的直线(r,theta),将得到一条正弦曲线。如果将图片中的所有非0点的正弦曲线都绘制出来,则会存在一些交点。所有经过这个交点的正弦曲线,说明都拥有同样的(r,theta), 意味着这些点在一条直线上。

    如上图所示,三个点(对应图中的三条正弦曲线)在一条直线上,因为这三个曲线交于一点,具有相同的(r, theta)。霍夫线变换就是利用这种方法来寻找图中的直线。

    函数:skimage.transform.hough_line(img)

    返回三个值:

    • h: 霍夫变换累积器
    • theta: 点与x轴的夹角集合,一般为0-179度
    • distance: 点到原点的距离,即上面的所说的r.
    import skimage.transform as st
    import numpy as np
    import matplotlib.pyplot as plt
    
    # 构建测试图片
    image = np.zeros((100, 100))  #背景图
    idx = np.arange(25, 75)    #25-74序列
    image[idx[::-1], idx] = 255  # 线条
    image[idx, idx] = 255        # 线条/
    
    # hough线变换
    h, theta, d = st.hough_line(image)
    
    #生成一个一行两列的窗口(可显示两张图片).
    fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(8, 6))
    plt.tight_layout()
    
    #显示原始图片
    ax0.imshow(image, plt.cm.gray)
    ax0.set_title('Input image')
    ax0.set_axis_off()
    
    #显示hough变换所得数据
    ax1.imshow(np.log(1 + h))
    ax1.set_title('Hough transform')
    ax1.set_xlabel('Angles (degrees)')
    ax1.set_ylabel('Distance (pixels)')
    ax1.axis('image')

    结果如下图所示:

    从右边那张图可以看出,有两个交点,说明原图像中有两条直线。如果我们要把图中的两条直线绘制出来,则需要用到另外一个函数:

                    skimage.transform.hough_line_peaks(hspaceanglesdists)

    用这个函数可以取出峰值点,即交点,也即原图中的直线。返回的参数与输入的参数一样。我们修改一下上边的程序,在原图中将两直线绘制出来。

    import skimage.transform as st
    import numpy as np
    import matplotlib.pyplot as plt
    
    # 构建测试图片
    image = np.zeros((100, 100))  #背景图
    idx = np.arange(25, 75)    #25-74序列
    image[idx[::-1], idx] = 255  # 线条
    image[idx, idx] = 255        # 线条/
    
    # hough线变换
    h, theta, d = st.hough_line(image)
    
    #生成一个一行三列的窗口(可显示三张图片).
    fig, (ax0, ax1,ax2) = plt.subplots(1, 3, figsize=(8, 6))
    plt.tight_layout()
    
    #显示原始图片
    ax0.imshow(image, plt.cm.gray)
    ax0.set_title('Input image')
    ax0.set_axis_off()
    
    #显示hough变换所得数据
    ax1.imshow(np.log(1 + h))
    ax1.set_title('Hough transform')
    ax1.set_xlabel('Angles (degrees)')
    ax1.set_ylabel('Distance (pixels)')
    ax1.axis('image')
    
    #显示检测出的线条
    ax2.imshow(image, plt.cm.gray)
    row1, col1 = image.shape
    for _, angle, dist in zip(*st.hough_line_peaks(h, theta, d)):
        y0 = (dist - 0 * np.cos(angle)) / np.sin(angle)
        y1 = (dist - col1 * np.cos(angle)) / np.sin(angle)
        ax2.plot((0, col1), (y0, y1), '-r')
    ax2.axis((0, col1, row1, 0))
    ax2.set_title('Detected lines')
    ax2.set_axis_off()

    结果如下图所示:

    注意,绘制线条的时候,要从极坐标转换为笛卡尔坐标,公式为:

    skimage还提供了另外一个检测直线的霍夫变换函数,概率霍夫线变换:

    skimage.transform.probabilistic_hough_line(img, threshold=10, line_length=5,line_gap=3)

    参数:

    • img: 待检测的图像。
    • threshold: 阈值,可先项,默认为10
    • line_length: 检测的最短线条长度,默认为5
    • line_gap: 线条间的最大间隙。增大这个值可以合并破碎的线条。默认为3

    返回:

    • lines: 线条列表, 格式如((x0, y0), (x1, y0)),标明开始点和结束点

    下面,我们用canny算子提取边缘,然后检测哪些边缘是直线?

    import skimage.transform as st
    import matplotlib.pyplot as plt
    from skimage import data,feature,color
    
    #使用Probabilistic Hough Transform.
    image = data.camera()
    edges = feature.canny(image, sigma=2, low_threshold=1, high_threshold=25)
    lines = st.probabilistic_hough_line(edges, threshold=10, line_length=5,line_gap=3)
    
    # 创建显示窗口.
    fig, (ax0, ax1, ax2) = plt.subplots(1, 3, figsize=(16, 6))
    plt.tight_layout()
    
    #显示原图像
    ax0.imshow(image, plt.cm.gray)
    ax0.set_title('Input image')
    ax0.set_axis_off()
    
    #显示canny边缘
    ax1.imshow(edges, plt.cm.gray)
    ax1.set_title('Canny edges')
    ax1.set_axis_off()
    
    #用plot绘制出所有的直线
    ax2.imshow(edges * 0)
    for line in lines:
        p0, p1 = line
        ax2.plot((p0[0], p1[0]), (p0[1], p1[1]))
    row2, col2 = image.shape
    ax2.axis((0, col2, row2, 0))
    ax2.set_title('Probabilistic Hough')
    ax2.set_axis_off()
    plt.show()

     结果如下图所示:

    二 霍夫圆和椭圆变换

    在极坐标中,圆的表示方式为:

    • x=x0+rcosθ
    • y=y0+rsinθ

    圆心为(x0,y0),r为半径,θ为旋转度数,值范围为0-359

    如果给定圆心点和半径,则其它点是否在圆上,我们就能检测出来了。在图像中,我们将每个非0像素点作为圆心点,以一定的半径进行检测,如果有一个点在圆上,我们就对这个圆心累加一次。如果检测到一个圆,那么这个圆心点就累加到最大,成为峰值。因此,在检测结果中,一个峰值点,就对应一个圆心点。

    霍夫圆检测的函数:

                 skimage.transform.hough_circle(imageradius)

    • radius是一个数组,表示半径的集合,如[3,4,5,6]
    • 返回一个3维的数组(radius index, M, N), 第一维表示半径的索引,后面两维表示图像的尺寸。

    例1:绘制两个圆形,用霍夫圆变换将它们检测出来。

    import numpy as np
    import matplotlib.pyplot as plt
    from skimage import draw,transform,feature
    
    img = np.zeros((250, 250,3), dtype=np.uint8)
    rr, cc = draw.circle_perimeter(60, 60, 50)  #以圆心为(60,60)半径为50画一个圆,
    rr1, cc1 = draw.circle_perimeter(150, 150, 60) #圆心为(150,150)半径为60画一个圆
    img[cc, rr,:] =255
    img[cc1, rr1,:] =255
    
    fig, (ax0,ax1) = plt.subplots(1,2, figsize=(8, 5))
    
    ax0.imshow(img)  #显示原图
    ax0.set_title('origin image')
    
    hough_radii = np.arange(50, 80, 5)  #半径范围
    hough_res =transform.hough_circle(img[:,:,0], hough_radii)  #圆变换 
    
    centers = []  #保存所有圆心点坐标
    accums = []   #累积值
    radii = []    #半径
    
    for radius, h in zip(hough_radii, hough_res):
        #每一个半径值,取出其中两个圆
    #zip()的用法
    num_peaks = 2 peaks =feature.peak_local_max(h, num_peaks=num_peaks) #取出峰值 centers.extend(peaks) accums.extend(h[peaks[:, 0], peaks[:, 1]]) radii.extend([radius] * num_peaks) #画出最接近的圆 image =np.copy(img) for idx in np.argsort(accums)[::-1][:2]:#argsort()函数是将x中的元素从小到大排列,提取其对应的index(索引),然后输出到y center_x, center_y = centers[idx] radius = radii[idx] cx, cy =draw.circle_perimeter(center_y, center_x, radius) image[cy, cx] =(255,0,0) ax1.imshow(image) ax1.set_title('detected image')

    结果如下图所示:

    例2,检测出下图中存在的硬币。

     

    import numpy as np
    import matplotlib.pyplot as plt
    from skimage import data, color,draw,transform,feature,util
    
    image = util.img_as_ubyte(data.coins()[0:95, 70:370]) #裁剪原图片
    edges =feature.canny(image, sigma=3, low_threshold=10, high_threshold=50) #检测canny边缘
    
    fig, (ax0,ax1) = plt.subplots(1,2, figsize=(8, 5))
    
    ax0.imshow(edges, cmap=plt.cm.gray)  #显示canny边缘
    ax0.set_title('original iamge')
    
    hough_radii = np.arange(15, 30, 2)  #半径范围
    hough_res =transform.hough_circle(edges, hough_radii)  #圆变换 
    
    centers = []  #保存中心点坐标
    accums = []   #累积值
    radii = []    #半径
    
    for radius, h in zip(hough_radii, hough_res):
        #每一个半径值,取出其中两个圆
        num_peaks = 2
        peaks =feature.peak_local_max(h, num_peaks=num_peaks) #取出峰值
        centers.extend(peaks)
        accums.extend(h[peaks[:, 0], peaks[:, 1]])
        radii.extend([radius] * num_peaks)
    
    #画出最接近的5个圆
    image = color.gray2rgb(image)
    for idx in np.argsort(accums)[::-1][:5]:
        center_x, center_y = centers[idx]
        radius = radii[idx]
        cx, cy =draw.circle_perimeter(center_y, center_x, radius)
        image[cy, cx] = (255,0,0)
    
    ax1.imshow(image)
    ax1.set_title('detected image')

    结果如下图所示:

    椭圆变换是类似的,使用函数为:

               skimage.transform.hough_ellipse(img,accuracythreshold, min_sizemax_size)

    输入参数:

    • img: 待检测图像。
    • accuracy: 使用在累加器上的短轴二进制尺寸,是一个double型的值,默认为1
    • thresh: 累加器阈值,默认为4
    • min_size: 长轴最小长度,默认为4
    • max_size: 短轴最大长度,默认为None,表示图片最短边的一半。

    返回一个 [(accumulator, y0, x0, a, b, orientation)] 数组。

    • accumulator表示累加器
    • (y0,x0)表示椭圆中心点
    • (a,b)分别表示长短轴,orientation表示椭圆方向

    例:检测出咖啡图片中的椭圆杯口。

    import matplotlib.pyplot as plt
    from skimage import data,draw,color,transform,feature
    
    #加载图片,转换成灰度图并检测边缘
    image_rgb = data.coffee()[0:220, 160:420] #裁剪原图像,不然速度非常慢
    image_gray = color.rgb2gray(image_rgb)
    edges = feature.canny(image_gray, sigma=2.0, low_threshold=0.55, high_threshold=0.8)
    
    #执行椭圆变换
    result =transform.hough_ellipse(edges, accuracy=20, threshold=250,min_size=100, max_size=120)
    result.sort(order='accumulator') #根据累加器排序
    
    #估计椭圆参数
    best = list(result[-1])  #排完序后取最后一个
    yc, xc, a, b = [int(round(x)) for x in best[1:5]]
    orientation = best[5]
    
    #在原图上画出椭圆
    cy, cx =draw.ellipse_perimeter(yc, xc, a, b, orientation)
    image_rgb[cy, cx,:] = (255, 0, 0) #在原图中用蓝色表示检测出的椭圆
    
    fig2, (ax1, ax2) = plt.subplots(ncols=2, nrows=1, figsize=(8, 4))
    
    ax1.set_title('canny')
    ax1.imshow(edges)
    
    ax2.set_title('result')
    ax2.imshow(image_rgb)
    
    plt.show()

    结果如下图所示:

    霍夫椭圆变换速度非常慢,应避免图像太大。

  • 相关阅读:
    solidworks中的一些标注尺寸的技巧
    SolidWorks 2-8草图绘制的一般过程
    SolidWorks 2-7 草图的约束【课程来自虎课网】
    SolidWorks 2-5 草图的编辑
    HTML 文本格式化实例--实体
    今天长进之redis的学习
    初步了解Quartz
    职场风云3
    内网穿透
    职场风云2
  • 原文地址:https://www.cnblogs.com/Terrypython/p/9979262.html
Copyright © 2020-2023  润新知