• 【Caffe】源码解析----caffe.proto (转载)


    分析caffe源码,看首先看caffe.proto,是明智的选择。好吧,我不是创造者,只是搬运工。

    原文地址:http://blog.csdn.net/qq_16055159/article/details/45115359
    引言

    要看caffe源码,我认为首先应该看的就是caffe.proto。
    它位于…srccaffeproto目录下,在这个文件夹下还有一个.pb.cc和一个.pb.h文件,这两个文件都是由caffe.proto编译而来的。
    在caffe.proto中定义了很多结构化数据,包括:

    BlobProto
    Datum
    FillerParameter
    NetParameter
    SolverParameter
    SolverState
    LayerParameter
    ConcatParameter
    ConvolutionParameter
    DataParameter
    DropoutParameter
    HDF5DataParameter
    HDF5OutputParameter
    ImageDataParameter
    InfogainLossParameter
    InnerProductParameter
    LRNParameter
    MemoryDataParameter
    PoolingParameter
    PowerParameter
    WindowDataParameter
    V0LayerParameter
    

    正文

    一、什么是protocol buffer

    以下内容摘自:Google Protocol Buffer 的使用和原理
    强烈推荐另外一篇极好的博文是:Protocol Buffer技术详解(C++实例)
    简介

    什么是 Google Protocol Buffer? 假如您在网上搜索,应该会得到类似这样的文字介绍:
    Google Protocol Buffer( 简称 Protobuf) 是 Google 公司内部的混合语言数据标准,目前已经正在使用的有超过 48,162 种报文格式定义和超过 12,183 个 .proto 文件。他们用于 RPC 系统和持续数据存储系统。
    Protocol Buffers 是一种轻便高效的结构化数据存储格式,可以用于结构化数据串行化,或者说序列化。它很适合做数据存储或 RPC 数据交换格式。可用于通讯协议、数据存储等领域的语言无关、平台无关、可扩展的序列化结构数据格式。目前提供了 C++、Java、Python 三种语言的 API。
    或许您和我一样,在第一次看完这些介绍后还是不明白 Protobuf 究竟是什么,那么我想一个简单的例子应该比较有助于理解它。
    一个简单的例子

    安装 Google Protocol Buffer
    在网站 http://code.google.com/p/protobuf/downloads/list上可以下载 Protobuf 的源代码。然后解压编译安装便可以使用它了。
    安装步骤如下所示:

    tar -xzf protobuf-2.1.0.tar.gz
    cd protobuf-2.1.0
    ./configure –prefix=$INSTALL_DIR
    make
    make check
    make install
    关于简单例子的描述

    我打算使用 Protobuf 和 C++ 开发一个十分简单的例子程序。
    该程序由两部分组成。第一部分被称为 Writer,第二部分叫做 Reader。
    Writer 负责将一些结构化的数据写入一个磁盘文件,Reader 则负责从该磁盘文件中读取结构化数据并打印到屏幕上。
    准备用于演示的结构化数据是 HelloWorld,它包含两个基本数据:

    ID,为一个整数类型的数据
    Str,这是一个字符串
    

    书写 .proto 文件

    首先我们需要编写一个 proto 文件,定义我们程序中需要处理的结构化数据,在 protobuf 的术语中,结构化数据被称为 Message。proto 文件非常类似 java 或者 C 语言的数据定义。代码清单 1 显示了例子应用中的 proto 文件内容。

    清单 1. proto 文件

    package lm; 
     message helloworld 
     { 
        required int32     id = 1;  // ID 
        required string    str = 2;  // str 
        optional int32     opt = 3;  //optional field 
     }

    一个比较好的习惯是认真对待 proto 文件的文件名。比如将命名规则定于
    packageName.MessageName.proto
    在上例中,package 名字叫做 lm,定义了一个消息 helloworld,该消息有三个成员,类型为 int32 的 id,另一个为类型为 string 的成员 str。opt 是一个可选的成员,即消息中可以不包含该成员。
    编译 .proto 文件

    写好 proto 文件之后就可以用 Protobuf 编译器将该文件编译成目标语言了。本例中我们将使用 C++。
    假设您的 proto 文件存放在 $SRC_DIR 下面,您也想把生成的文件放在同一个目录下,则可以使用如下命令:

    protoc -I=$SRC_DIR --cpp_out=$DST_DIR $SRC_DIR/addressbook.proto

    命令将生成两个文件:
    lm.helloworld.pb.h , 定义了 C++ 类的头文件
    lm.helloworld.pb.cc , C++ 类的实现文件
    在生成的头文件中,定义了一个 C++ 类 helloworld,后面的 Writer 和 Reader 将使用这个类来对消息进行操作。诸如对消息的成员进行赋值,将消息序列化等等都有相应的方法。
    编写 writer 和 Reader

    如前所述,Writer将把一个结构化数据写入磁盘,以便其他人来读取。假如我们不使用 Protobuf,其实也有许多的选择。一个可能的方法是将数据转换为字符串,然后将字符串写入磁盘。转换为字符串的方法可以使用sprintf(),这非常简单。数字123可以变成字符串“123”。
    这样做似乎没有什么不妥,但是仔细考虑一下就会发现,这样的做法对写 Reader 的那个人的要求比较高,Reader 的作者必须了 Writer 的细节。比如”123”可以是单个数字 123,但也可以是三个数字 1,2 和 3,等等。这么说来,我们还必须让 Writer 定义一种分隔符一样的字符,以便 Reader 可以正确读取。但分隔符也许还会引起其他的什么问题。最后我们发现一个简单的 Helloworld 也需要写许多处理消息格式的代码。
    如果使用 Protobuf,那么这些细节就可以不需要应用程序来考虑了。
    使用 Protobuf,Writer 的工作很简单,需要处理的结构化数据由 .proto 文件描述,经过上一节中的编译过程后,该数据化结构对应了一个 C++ 的类,并定义在 lm.helloworld.pb.h 中。对于本例,类名为 lm::helloworld。
    Writer 需要 include 该头文件,然后便可以使用这个类了。
    现在,在 Writer 代码中,将要存入磁盘的结构化数据由一个 lm::helloworld 类的对象表示,它提供了一系列的 get/set 函数用来修改和读取结构化数据中的数据成员,或者叫 field。
    当我们需要将该结构化数据保存到磁盘上时,类 lm::helloworld 已经提供相应的方法来把一个复杂的数据变成一个字节序列,我们可以将这个字节序列写入磁盘。
    对于想要读取这个数据的程序来说,也只需要使用类 lm::helloworld 的相应反序列化方法来将这个字节序列重新转换会结构化数据。这同我们开始时那个“123”的想法类似,不过 Protobuf 想的远远比我们那个粗糙的字符串转换要全面,因此,我们不如放心将这类事情交给 Protobuf 吧。

    程序清单 2 演示了 Writer 的主要代码,您一定会觉得很简单吧?
    清单 2. Writer 的主要代码

    #include "lm.helloworld.pb.h"
    …
    
     int main(void) 
     { 
    
      lm::helloworld msg1; 
      msg1.set_id(101); 
      msg1.set_str(“hello”); 
    
      // Write the new address book back to disk. 
      fstream output("./log", ios::out | ios::trunc | ios::binary); 
    
      if (!msg1.SerializeToOstream(&output)) { 
          cerr << "Failed to write msg." << endl; 
          return -1; 
      }         
      return 0; 
     }

    Msg1 是一个 helloworld 类的对象,set_id() 用来设置 id 的值。SerializeToOstream 将对象序列化后写入一个 fstream 流。

    代码清单 3 列出了 reader 的主要代码。
    清单 3. Reader

    #include "lm.helloworld.pb.h" void ListMsg(const lm::helloworld & msg) { 
      cout << msg.id() << endl; 
      cout << msg.str() << endl; 
     } 
    
     int main(int argc, char* argv[]) { 
    
      lm::helloworld msg1; 
    
      { 
        fstream input("./log", ios::in | ios::binary); 
        if (!msg1.ParseFromIstream(&input)) { 
          cerr << "Failed to parse address book." << endl; 
          return -1; 
        } 
      } 
    
      ListMsg(msg1); 
      … 
     }

    同样,Reader 声明类 helloworld 的对象 msg1,然后利用 ParseFromIstream 从一个 fstream 流中读取信息并反序列化。此后,ListMsg 中采用 get 方法读取消息的内部信息,并进行打印输出操作。
    运行结果
    运行 Writer 和 Reader 的结果如下:

    >writer 
    >reader 
    101 
    Hello

    Reader 读取文件 log 中的序列化信息并打印到屏幕上。本文中所有的例子代码都可以在附件中下载。您可以亲身体验一下。
    这个例子本身并无意义,但只要您稍加修改就可以将它变成更加有用的程序。比如将磁盘替换为网络 socket,那么就可以实现基于网络的数据交换任务。而存储和交换正是 Protobuf 最有效的应用领域。

    二、caffe.proto中的几个重要数据类型

    看完了上面关于protocol buffer的介绍,大家应该可以知道其实caffe.pb.cc里面的东西都是从caffe.proto编译而来的,无非就是一些关于这些数据结构(类)的标准化操作,比如

     void CopyFrom();
      void MergeFrom();
      void CopyFrom();
      void MergeFrom;
      void Clear();
      bool IsInitialized() const;
      int ByteSize() const;
      bool MergePartialFromCodedStream();
      void SerializeWithCachedSizes() const;
      SerializeWithCachedSizesToArray() const;
      int GetCachedSize()
      void SharedCtor();
      void SharedDtor();
      void SetCachedSize() const;

    <0> BlobProto

    message BlobProto {//blob的属性以及blob中的数据(datadiff)
      optional int32 num = 1 [default = 0];
      optional int32 channels = 2 [default = 0];
      optional int32 height = 3 [default = 0];
      optional int32 width = 4 [default = 0];
      repeated float data = 5 [packed = true];
      repeated float diff = 6 [packed = true];
    }

    <1> Datum

    message Datum {
      optional int32 channels = 1;
      optional int32 height = 2;
      optional int32 width = 3;
      optional bytes data = 4;//真实的图像数据,以字节存储(bytes)
      optional int32 label = 5;
      repeated float float_data = 6;//datum也能存float类型的数据(float)
    }

    <2> LayerParameter

    message LayerParameter {
      repeated string bottom = 2; //输入的blob的名字(string)
      repeated string top = 3; //输出的blob的名字(string)
      optional string name = 4; //层的名字
      enum LayerType { //层的枚举(enum,和c++中的enum一样)
        NONE = 0;
        ACCURACY = 1;
        BNLL = 2;
        CONCAT = 3;
        CONVOLUTION = 4;
        DATA = 5;
        DROPOUT = 6;
        EUCLIDEAN_LOSS = 7;
        ELTWISE_PRODUCT = 25;
        FLATTEN = 8;
        HDF5_DATA = 9;
        HDF5_OUTPUT = 10;
        HINGE_LOSS = 28;
        IM2COL = 11;
        IMAGE_DATA = 12;
        INFOGAIN_LOSS = 13;
        INNER_PRODUCT = 14;
        LRN = 15;
        MEMORY_DATA = 29;
        MULTINOMIAL_LOGISTIC_LOSS = 16;
        POOLING = 17;
        POWER = 26;
        RELU = 18;
        SIGMOID = 19;
        SIGMOID_CROSS_ENTROPY_LOSS = 27;
        SOFTMAX = 20;
        SOFTMAX_LOSS = 21;
        SPLIT = 22;
        TANH = 23;
        WINDOW_DATA = 24;
      }
      optional LayerType type = 5; // 层的类型
      repeated BlobProto blobs = 6; //blobs的数值参数
      repeated float blobs_lr = 7; //学习速率(repeated),如果你想那个设置一个blob的学习速率,你需要设置所有blob的学习速率。
      repeated float weight_decay = 8; //权值衰减(repeated)
    
      // 相对于某一特定层的参数(optional)
      optional ConcatParameter concat_param = 9;
      optional ConvolutionParameter convolution_param = 10;
      optional DataParameter data_param = 11;
      optional DropoutParameter dropout_param = 12;
      optional HDF5DataParameter hdf5_data_param = 13;
      optional HDF5OutputParameter hdf5_output_param = 14;
      optional ImageDataParameter image_data_param = 15;
      optional InfogainLossParameter infogain_loss_param = 16;
      optional InnerProductParameter inner_product_param = 17;
      optional LRNParameter lrn_param = 18;
      optional MemoryDataParameter memory_data_param = 22;
      optional PoolingParameter pooling_param = 19;
      optional PowerParameter power_param = 21;
      optional WindowDataParameter window_data_param = 20;
      optional V0LayerParameter layer = 1;
    }

    <3> NetParameter

    message NetParameter {
      optional string name = 1;//网络的名字
      repeated LayerParameter layers = 2; //repeated类似于数组
      repeated string input = 3;//输入层blob的名字
      repeated int32 input_dim = 4;//输入层blob的维度,应该等于(4*#input)
      optional bool force_backward = 5 [default = false];//网络是否进行反向传播。如果设置为否,则由网络的结构和学习速率来决定是否进行反向传播。
    }

    <4> SolverParameter

    message SolverParameter {
      optional string train_net = 1; // 训练网络的proto file
      optional string test_net = 2; // 测试网络的proto file
      optional int32 test_iter = 3 [default = 0]; // 每次测试时的迭代次数
      optional int32 test_interval = 4 [default = 0]; // 两次测试的间隔迭代次数
      optional bool test_compute_loss = 19 [default = false];
      optional float base_lr = 5; // 基本学习率
      optional int32 display = 6; // 两次显示的间隔迭代次数
      optional int32 max_iter = 7; // 最大迭代次数
      optional string lr_policy = 8; // 学习速率衰减方式
      optional float gamma = 9; // 关于梯度下降的一个参数
      optional float power = 10; // 计算学习率的一个参数
      optional float momentum = 11; // 动量
      optional float weight_decay = 12; // 权值衰减
      optional int32 stepsize = 13; // 学习速率的衰减步长
      optional int32 snapshot = 14 [default = 0]; // snapshot的间隔
      optional string snapshot_prefix = 15; // snapshot的前缀
      optional bool snapshot_diff = 16 [default = false]; // 是否对于 diff 进行 snapshot
      enum SolverMode {
        CPU = 0;
        GPU = 1;
      }
      optional SolverMode solver_mode = 17 [default = GPU]; // solver的模式,默认为GPU
      optional int32 device_id = 18 [default = 0]; // GPU的ID
      optional int64 random_seed = 20 [default = -1]; // 随机数种子
      optional bool debug_info = 7 [default = false]; // 调试网络很好用,可以打印出前向传播的数据以及反向传播的数据, 在网络出问题时,可以用来看看网络
    }

    三、caffe.proto源码

    以下转载自(http://blog.csdn.net/langb2014/article/details/50395466

    //////////////////  
    caffe.proto文件注释,  
    caffe版本:MS-caffe-master github 2016.8.20  
    caffe版本:BVLC-caffe-master github 2016.8.20  
    //////////////////  
    syntax = "proto2";  
    package caffe;    
    // 数据块形状{指定Blob的形状或维度-4D}  
    message BlobShape {  
      //数据块形状定义为Num×Channel×Height×Wight原因在于caffe基于容器的多维嵌套  
      //来实现高维数据的封装。即vector(N)>。  
      repeated int64 dim = 1 [packed = true];  
    }  
    
    // 数据块{形状,数据,微分}  
    message BlobProto {  
      optional BlobShape shape = 7;  
      repeated float data = 5 [packed = true];  
      repeated float diff = 6 [packed = true];  
      repeated double double_data = 8 [packed = true];  
      repeated double double_diff = 9 [packed = true];  
    
      //数据4D形状 -- 旧版本,已使用"BlobShape shape"代替:  
      optional int32 num = 1 [default = 0]; //样本  
      optional int32 channels = 2 [default = 0];  
      optional int32 height = 3 [default = 0];  
      optional int32 width = 4 [default = 0];  
    }  
    
    // 存放多个BlobProto实例的对应Index,易于引用  
    message BlobProtoVector {  
      repeated BlobProto blobs = 1;  
    }  
    
    // 数据:{C,H,W,data(uchar&float),label} 图像样本  
    message Datum {  
      optional int32 channels = 1;  
      optional int32 height = 2;  
      optional int32 width = 3;  
      // the actual image data, in bytes  
      optional bytes data = 4;  
      optional int32 label = 5;  
      // Optionally, the datum could also hold float data.  
      repeated float float_data = 6;  
      // If true data contains an encoded image that need to be decoded  
      optional bool encoded = 7 [default = false];  
    }  
    
    //滤波器参数{Type(const|uniform|gauss),}  
    message FillerParameter {  
      // The filler type.  
      optional string type = 1 [default = 'constant'];  
      optional float value = 2 [default = 0]; // the value in constant filler  
      optional float min = 3 [default = 0]; // the min value in uniform filler  
      optional float max = 4 [default = 1]; // the max value in uniform filler  
      optional float mean = 5 [default = 0]; // the mean value in Gaussian filler  
      optional float std = 6 [default = 1]; // the std value in Gaussian filler  
      // 给定输入与权值相乘后应该得到非零输出,默认值-1意为不稀疏化高斯模板。  
      optional int32 sparse = 7 [default = -1];  
      // Normalize the filler variance by fan_in, fan_out, or their average.  
      // Applies to 'xavier' and 'msra' fillers.(扇入,扇出)  
      // 通过fanIn,fanOut,及其均值来归一化填充值的方差,有“xavier法”或“msra法”  
      enum VarianceNorm {  
        FAN_IN = 0;  
        FAN_OUT = 1;  
        AVERAGE = 2;  
      }  
      optional VarianceNorm variance_norm = 8 [default = FAN_IN];  
    }  
    
    //网络参数{网名,输入参数,数据块形状,forceBack,NetState,debugInfo,}  
    message NetParameter {  
      optional string name = 1; // consider giving the network a name  
      // 旧版--输入网络的数据块Blobs; 改为新版--InputParameter  
      repeated string input = 3;  
      // DEPRECATED. See InputParameter. The shape of the input blobs.  
      // 旧版--输入的Blobs的形状; 改为新版--InputerParameter  
      repeated BlobShape input_shape = 8;  
    
      // 指定Blobs的4D输入形状 -- 已改为新版:input_shape代替  
      // 如要使用旧版,对每个输入的blob都需要指定4个参数,Num×Cha×H×W  
      // 因此 input_dim需要重复4次  
      repeated int32 input_dim = 4;  
    
      //确定网络是否要让每个层都强制反向传播。  
      //如果设置为false,将根据网络结构和学习率来自动确定是否需要反向传播。  
      //网络的当前状态"state"包括"phase","level","stage"。(???)  
      //某些层需要设置phase属性,使其跳过网络运行时的某些状态.  
      optional NetState state = 6;  
    
      // 当运行Net::Forward/Backward/Update时,打印调试信息,默认false.  
      optional bool debug_info = 7 [default = false];  
    
      // 构成net的layers。每个layer的链接和行为通过LayerParameter配置。  
      repeated LayerParameter layer = 100;  // ID 100 so layers are printed last.  
    
      // DEPRECATED: use 'layer' instead.  
      repeated V1LayerParameter layers = 2;  
    }  
    
    // NOTE:注意  
    // Update the next available ID when you add a new SolverParameter field.  
    // 当你添加一个新的SolverParameter属性时,需要更新下一个可获得的ID  
    // SolverParameter next available ID: 41 (last added: type)  
    
    //求解器参数{网络,}  
    message SolverParameter {  
      //////////////////////////////////////////////////////////////////////////////  
      // Specifying the train and test networks  
      //  
      // Exactly one train net must be specified using one of the following fields:  
      //     train_net_param, train_net, net_param, net  
      // One or more test nets may be specified using any of the following fields:  
      //     test_net_param, test_net, net_param, net  
      // If more than one test net field is specified (e.g., both net and  
      // test_net are specified), they will be evaluated in the field order given  
      // above: (1) test_net_param, (2) test_net, (3) net_param/net.  
      // A test_iter must be specified for each test_net.  
      // A test_level and/or a test_stage may also be specified for each test_net.  
      //////////////////////////////////////////////////////////////////////////////  
      //指定网络,可有以下的多种形式  
      // Proto filename for the train net, possibly combined with one or more  
      // test nets.  
      optional string net = 24;  
      // Inline train net param, possibly combined with one or more test nets.  
      optional NetParameter net_param = 25;  
    
      optional string train_net = 1; // Proto filename for the train net.  
      repeated string test_net = 2; // Proto filenames for the test nets.  
      optional NetParameter train_net_param = 21; // Inline train net params.  
      repeated NetParameter test_net_param = 22; // Inline test net params.  
    
     // 指定网络状态  
     // The states for the train/test nets. Must be unspecified or  
      // specified once per net.  
      //  
      // By default, all states will have solver = true;  
      // train_state will have phase = TRAIN,  
      // and all test_state's will have phase = TEST.  
      // Other defaults are set according to the NetState defaults.  
      optional NetState train_state = 26;  
      repeated NetState test_state = 27;  
    
      //测试迭代批次数:  
      //合理设置可使得测试遍历完全部测试样本  
      //合理值 = 测试样本总数/每批次测试数 = totalTestSamples/batchSize  
      repeated int32 test_iter = 3;  
    
      //训练迭代批次数:  
      //两次测试之间所经历的训练迭代次数:合理设置可使得训练遍历完全部训练样本  
      //合理值 = 训练样本总数/每批次训练数 = totalTrainSamples/batchSize  
      optional int32 test_interval = 4 [default = 0];  
      //训练test_interval个批次,再测试test_iter个批次,为一个回合(epoch)  
      //合理设置应使得每个回合内,遍历覆盖到全部训练样本和测试样本  
    
      //默认不计算测试时损失  
      optional bool test_compute_loss = 19 [default = false];  
    
      // 如设置为真,则在训练前运行一次测试,以确保内存足够,并打印初始损失值  
      optional bool test_initialization = 32 [default = true];  
      // 基本学习速率  
      optional float base_lr = 5; // The base learning rate  
      // 打印信息的遍历间隔,遍历多少个批次打印一次信息。设置为0则不打印。  
      optional int32 display = 6;  
      // Display the loss averaged over the last average_loss iterations  
      // 打印最后一个迭代批次下的平均损失(?)  
      optional int32 average_loss = 33 [default = 1];  
      // 训练最大迭代次数  
      optional int32 max_iter = 7;  
      // accumulate gradients over `iter_size` x `batch_size` instances  
      // 累积梯度误差基于“iter_size×batchSize”个样本实例  
      // “批次数×批量数”=“遍历的批次数×每批的样本数”个样本实例  
      optional int32 iter_size = 36 [default = 1];  
    
      //学习率衰减策略(7种)  
      // The learning rate decay policy. The currently implemented learning rate  
      // policies are as follows:  
      //    - fixed: always return base_lr.  
      //    - step: return base_lr * gamma ^ (floor(iter / step))  
      //    - exp: return base_lr * gamma ^ iter  
      //    - inv: return base_lr * (1 + gamma * iter) ^ (- power)  
      //    - multistep: similar to step butallows non uniform steps defined by  
      //      stepvalue  
      //    - poly: the effective learning rate follows a polynomial decay, to be  
      //      zero by the max_iter. return base_lr (1 - iter/max_iter) ^ (power)  
      //    - sigmoid: the effective learning rate follows a sigmod decay  
      //      return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))  
      //  
      // 在上述参数中,base_lr, max_iter, gamma, step, stepvalue and power 被定义  
      // 在solver.prototxt文件中,iter是当前迭代次数。  
      optional string lr_policy = 8; //学习率调节策略  
      optional float gamma = 9; // The parameter to compute the learning rate.  
      optional float power = 10; // The parameter to compute the learning rate.  
      optional float momentum = 11; // The momentum value.动量  
      optional float weight_decay = 12; // The weight decay.权值衰减系数  
      //由权值衰减系数所控制的正则化类型:L1或L2范数,默认L2  
      optional string regularization_type = 29 [default = "L2"];  
      //"step"策略下,学习率的步长值  
      optional int32 stepsize = 13;  
      //"multistep"策略下的步长值  
      repeated int32 stepvalue = 34;  
    
      //设置梯度裁剪阈值为>=0,当其实际L2范数超出此值时(?)  
      optional float clip_gradients = 35 [default = -1];  
    
      //快照间隔,遍历多少次对模型和求解器状态保存一次  
      optional int32 snapshot = 14 [default = 0]; // The snapshot interval  
      optional string snapshot_prefix = 15; // The prefix for the snapshot.  
      //是否对diff快照,有助调试,但最终的protocol buffer尺寸会很大  
      optional bool snapshot_diff = 16 [default = false];  
      //快照数据保存格式{hdf5,binaryproto(默认)}  
      enum SnapshotFormat {  
        HDF5 = 0;  
        BINARYPROTO = 1;  
      }  
      optional SnapshotFormat snapshot_format = 37 [default = BINARYPROTO];  
      // the mode solver will use: 0 for CPU and 1 for GPU. Use GPU in default.  
      enum SolverMode {  
        CPU = 0;  
        GPU = 1;  
      }  
      求解模式{GPU(device_id),CPU}  
      optional SolverMode solver_mode = 17 [default = GPU];  
      optional int32 device_id = 18 [default = 0];  
      //随机数种子,设为正则表示Solver会以此为随机数初始化caffe,可产生重复随机  
      //数,易于重复试验;设为默认-1代表使用系统时钟作为种子。  
      optional int64 random_seed = 20 [default = -1];  
    
      //求解器类型=SGD(默认)  
      optional string type = 40 [default = "SGD"];  
    
      // numerical stability for RMSProp, AdaGrad and AdaDelta and Adam  
      optional float delta = 31 [default = 1e-8];  
      // parameters for the Adam solver  
      optional float momentum2 = 39 [default = 0.999];  
    
      // RMSProp decay value  
      // MeanSquare(t) = rms_decay*MeanSquare(t-1) + (1-rms_decay)*SquareGradient(t)  
      optional float rms_decay = 38;  
    
      //若真,则打印网络状态信息,有助于调试问题  
      optional bool debug_info = 23 [default = false];  
    
      //若假,则不会在训练后保存快照  
      optional bool snapshot_after_train = 28 [default = true];  
    
      // DEPRECATED: old solver enum types, use string instead  
      enum SolverType {  
        SGD = 0;  
        NESTEROV = 1;  
        ADAGRAD = 2;  
        RMSPROP = 3;  
        ADADELTA = 4;  
        ADAM = 5;  
      }  
      // DEPRECATED: use type instead of solver_type  
      optional SolverType solver_type = 30 [default = SGD];  
    }  
    
    //对求解器状态进行快照的消息  
    message SolverState {  
      optional int32 iter = 1; // The current iteration  
      optional string learned_net = 2; // The file that stores the learned net.  
      repeated BlobProto history = 3; // The history for sgd solvers  
      optional int32 current_step = 4 [default = 0]; // The current step for learning rate  
    }  
    
    enum Phase {  
       TRAIN = 0;  
       TEST = 1;  
    }  
    //NetState{phase,level,stage}  
    message NetState {  
      optional Phase phase = 1 [default = TEST];  
      optional int32 level = 2 [default = 0];  
      repeated string stage = 3;  
    }  
    
    //网络状态规则{phases,levels,stages}  
    message NetStateRule {  
      //在NetState中设置phase值(TRAIN|TEST),使其符合此规则  
      optional Phase phase = 1;  
    
      //设置layer中所使用的最小最大levels。使其不定义以满足忽视level的规则。  
      optional int32 min_level = 2;  
      optional int32 max_level = 3;  
    
      // Customizable sets of stages to include or exclude.  
      // The net must have ALL of the specified stages and NONE of the specified  
      // "not_stage"s to meet the rule.  
      // (Use multiple NetStateRules to specify conjunctions of stages.)  
      //可定制的stages集合,用于include或exclude在网络中。网络必须包含全  
      //部制定的"stages"或不包含全部制定的"not_stage"  
      repeated string stage = 4;  
      repeated string not_stage = 5;  
    }  
    
    // Specifies training parameters (multipliers on global learning constants,  
    // and the name and other settings used for weight sharing).  
    //指定训练参数(乘数及全局学习率常数)和其名称,以及其他用于权值共享的设置。  
    message ParamSpec {  
      // 设定参数blobs的名称--用于在层间共享参数,若无此需求则不用设计。  
      optional string name = 1;  
    
      //共享权重时是否需要其形状相同或仅仅数量相同,默认为形状相同  
      optional DimCheckMode share_mode = 2;  
      enum DimCheckMode {  
        // STRICT (default) 形状相同(num, channels, height, width)都匹配.  
        STRICT = 0;  
        // PERMISSIVE 数量相同  
        PERMISSIVE = 1;  
      }  
    
      // The multiplier on the global learning rate for this parameter.  
      // 全局学习率的乘数  
      optional float lr_mult = 3 [default = 1.0];  
    
      // The multiplier on the global weight decay for this parameter.  
      // 全局权值衰减系数的乘数  
      optional float decay_mult = 4 [default = 1.0];  
    }  
    
    //注意:  
    //当在LayerParameter中新增字段时,需要为其更新下一个可用ID。  
    //比如,最近新增了smooth_l1_loss_param层,则为其指定层专属ID:149。  
    //层参数{名称,类型,输入底,输出顶,阶段,损失加权系数,全局乘数,}  
    message LayerParameter {  
      optional string name = 1; // 类名称  
      optional string type = 2; // 类类型  
      repeated string bottom = 3; // the name of each bottom blob 输入blob名称  
      repeated string top = 4; // the name of each top blob 输出blob名称  
    
      // The train / test phase for computation. //阶段,运行时状态  
      optional Phase phase = 10;  
    
      //每层输出blob在目标损失函数中的加权系数,每层默认为0或1  
      repeated float loss_weight = 5;  
    
      //指定训练参数(全局学习率上的乘数lr_mrlt)  
      repeated ParamSpec param = 6;  
    
    
      // The blobs containing the numeric parameters of the layer.  
      //包含每层数值参数的blobs  
      repeated BlobProto blobs = 7;  
    
      // Specifies whether to backpropagate to each bottom. If unspecified,  
      // Caffe will automatically infer whether each input needs backpropagation  
      // to compute parameter gradients. If set to true for some inputs,  
      // backpropagation to those inputs is forced; if set false for some inputs,  
      // backpropagation to those inputs is skipped.  
      //  
      // The size must be either 0 or equal to the number of bottoms.  
    
      repeated bool propagate_down = 11;  
    
      // Rules控制每层是否被包含在网络中,基于当前的NetState. 可使用非0数规则来  
      // include或exclude,但不能兼有。如果未指定include或exclude规则,则该层总是  
      // 被包含在内。  
      repeated NetStateRule include = 8;  
      repeated NetStateRule exclude = 9;  
    
      // 用于数据预处理的参数  
      optional TransformationParameter transform_param = 100;  
    
      // 由loss层共享的参数.  
      optional LossParameter loss_param = 101;  
    
      // Layer type-specific parameters.  
      //  
      // Note: certain layers may have more than one computational engine  
      // for their implementation. These layers include an Engine type and  
      // engine parameter for selecting the implementation.  
      // The default for the engine is set by the ENGINE switch at compile-time.  
      // 层类型指定参数  
      // 注意:  
      optional AccuracyParameter accuracy_param = 102;  
      optional ArgMaxParameter argmax_param = 103;  
      optional BatchNormParameter batch_norm_param = 139;  
      optional BiasParameter bias_param = 141;  
      optional ConcatParameter concat_param = 104;  
      optional ContrastiveLossParameter contrastive_loss_param = 105;  
      optional ConvolutionParameter convolution_param = 106;  
      optional CropParameter crop_param = 144;  
      optional DataParameter data_param = 107;  
      optional DropoutParameter dropout_param = 108;  
      optional DummyDataParameter dummy_data_param = 109;  
      optional EltwiseParameter eltwise_param = 110;  
      optional ELUParameter elu_param = 140;  
      optional EmbedParameter embed_param = 137;  
      optional ExpParameter exp_param = 111;  
      optional FlattenParameter flatten_param = 135;  
      optional HDF5DataParameter hdf5_data_param = 112;  
      optional HDF5OutputParameter hdf5_output_param = 113;  
      optional HingeLossParameter hinge_loss_param = 114;  
      optional ImageDataParameter image_data_param = 115;  
      optional InfogainLossParameter infogain_loss_param = 116;  
      optional InnerProductParameter inner_product_param = 117;  
      optional InputParameter input_param = 143;  
      optional LogParameter log_param = 134;  
      optional LRNParameter lrn_param = 118;  
      optional MemoryDataParameter memory_data_param = 119;  
      optional MVNParameter mvn_param = 120;  
      optional ParameterParameter parameter_param = 145;  
      optional PoolingParameter pooling_param = 121;  
      optional PowerParameter power_param = 122;  
      optional PReLUParameter prelu_param = 131;  
      optional PythonParameter python_param = 130;  
      optional RecurrentParameter recurrent_param = 146;  
      optional ReductionParameter reduction_param = 136;  
      optional ReLUParameter relu_param = 123;  
      optional ReshapeParameter reshape_param = 133;  
      optional ROIPoolingParameter roi_pooling_param = 147;  
      optional ScaleParameter scale_param = 142;  
      optional SigmoidParameter sigmoid_param = 124;  
      optional SmoothL1LossParameter smooth_l1_loss_param = 148;  
      optional SoftmaxParameter softmax_param = 125;  
      optional SPPParameter spp_param = 132;  
      optional SliceParameter slice_param = 126;  
      optional TanHParameter tanh_param = 127;  
      optional ThresholdParameter threshold_param = 128;  
      optional TileParameter tile_param = 138;  
      optional WindowDataParameter window_data_param = 129;  
      optional MILDataParameter mil_data_param = 0x004d4944; //"MID"  
      optional MILParameter mil_param = 0x004d494c; //"MIL"  
    }  
    
    // 对数据层进行转换的参数  
    message TransformationParameter {  
      // 对data执行预处理,比如简单缩放,去均值。  
      optional float scale = 1 [default = 1];  
      // Specify if we want to randomly mirror data.//镜像  
      optional bool mirror = 2 [default = false];  
      // Specify if we would like to randomly crop an image.//随机裁剪  
      optional uint32 crop_size = 3 [default = 0];  
      // 指定均值文件或均值,二者不可兼有;在对应通道上减去此均值;  
      optional string mean_file = 4;  
      repeated float mean_value = 5;  
      // 强制转换图像为3通道彩色  
      optional bool force_color = 6 [default = false];  
      // 强制转换为灰度图  
      optional bool force_gray = 7 [default = false];  
    }  
    
    // Loss层参数  
    message LossParameter {  
      // 如果被指定,则忽略给定label的实例  
      optional int32 ignore_label = 1;  
      // 如何对loss层损失归一化,使其跨越"batches,spatial(H*W)"或其他维度。  
      // 目前仅仅在SoftmaxWithLoss层中实现。  
      // 归一化模式  
      enum NormalizationMode {  
        // 基于batchSize×spatialDim归一化.所设定的忽略标签将不被忽略。  
        FULL = 0;  
        // 基于输出位置的总数量(batchSize×H×W)归一化,不包括被忽视的标签。  
        // 若未设置被忽视标签,则其行为与FULL相同。  
        VALID = 1;  
        // Divide by the batch size.基于batchSize进行归一化。  
        BATCH_SIZE = 2;  
        // Do not normalize the loss.不归一化损失  
        NONE = 3;  
      }  
      optional NormalizationMode normalization = 3 [default = VALID];  
      // 旧版--新版如上所述。  
      // 若"normalization"被指定则忽略此参数;若未被指定,可设置下值为false  
      // 则基于batchSize归一化。  
      optional bool normalize = 2;  
    }  
    
    // Messages that store parameters used by individual layer types follow, in  
    // alphabetical order.  
    
    message AccuracyParameter {  
      // When computing accuracy, count as correct by comparing the true label to  
      // the top k scoring classes.  By default, only compare to the top scoring  
      // class (i.e. argmax). //Topk正确率计算  
      optional uint32 top_k = 1 [default = 1];  
    
      // The "label" axis of the prediction blob, whose argmax corresponds to the  
      // predicted label -- may be negative to index from the end (e.g.,-1 for the  
      // last axis).  For example, if axis == 1 and the predictions are  
      // (N x C x H x W), the label blob is expected to contain N*H*W ground truth  
      // labels with integer values in {0, 1, ..., C-1}.  
      // 预测blob的"label"轴--其最大值才对应于预测标签--的索引有可能从负值开始。  
      // 即: predicted_labels=argmax(predictions blob,label_axis)  
      // 比如axis==1,其预测blob为(N x C x H x W), 而标签blob被期望包含(N×H×W)个  
      // 真实标签,且标签值为{0,1,2...C-1}。  
      optional int32 axis = 2 [default = 1];  
    
      // If specified, ignore instances with the given label.  
      // 如果指定,则忽略给定标签的对应实例  
      optional int32 ignore_label = 3;  
    }  
    //输出最大化参数,对预测标签进行最大化  
    message ArgMaxParameter {  
      // If true produce pairs (argmax, maxval)  
      // 如果真,则产生(argmax,maxval)对  
      optional bool out_max_val = 1 [default = false];  
      optional uint32 top_k = 2 [default = 1];  
      // The axis along which to maximise -- may be negative to index from the  
      // end (e.g., -1 for the last axis).  
      // By default ArgMaxLayer maximizes over the flattened trailing dimensions  
      // for each index of the first / num dimension. ??  
      //  
      optional int32 axis = 3;  
    }  
    //拼接参数  
    message ConcatParameter {  
      // The axis along which to concatenate -- may be negative to index from the  
      // end (e.g., -1 for the last axis).  Other axes must have the  
      // same dimension for all the bottom blobs.  
      // By default, ConcatLayer concatenates blobs along the "channels" axis (1).  
      optional int32 axis = 2 [default = 1];  
    
      // DEPRECATED: alias for "axis" -- does not support negative indexing.  
      optional uint32 concat_dim = 1 [default = 1];  
    }  
    //BatchNormParameter参数,源于论文batchNorm  
    message BatchNormParameter {  
      // If false, accumulate global mean/variance values via a moving average. If  
      // true, use those accumulated values instead of computing mean/variance  
      // across the batch.  
      optional bool use_global_stats = 1;  
      // How much does the moving average decay each iteration?  
      optional float moving_average_fraction = 2 [default = .999];  
      // Small value to add to the variance estimate so that we don't divide by  
      // zero.  
      optional float eps = 3 [default = 1e-5];  
    }  
    //偏置参数  
    message BiasParameter {  
      // The first axis of bottom[0] (the first input Blob) along which to apply  
      // bottom[1] (the second input Blob).  May be negative to index from the end  
      // (e.g., -1 for the last axis).  
      //  
      // For example, if bottom[0] is 4D with shape 100x3x40x60, the output  
      // top[0] will have the same shape, and bottom[1] may have any of the  
      // following shapes (for the given value of axis):  
      //    (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60  
      //    (axis == 1 == -3)          3;     3x40;     3x40x60  
      //    (axis == 2 == -2)                   40;       40x60  
      //    (axis == 3 == -1)                                60  
      // Furthermore, bottom[1] may have the empty shape (regardless of the value of  
      // "axis") -- a scalar bias.  
      optional int32 axis = 1 [default = 1];  
    
      // (num_axes is ignored unless just one bottom is given and the bias is  
      // a learned parameter of the layer.  Otherwise, num_axes is determined by the  
      // number of axes by the second bottom.)  
      // The number of axes of the input (bottom[0]) covered by the bias  
      // parameter, or -1 to cover all axes of bottom[0] starting from `axis`.  
      // Set num_axes := 0, to add a zero-axis Blob: a scalar.  
      optional int32 num_axes = 2 [default = 1];  
    
      // (filler is ignored unless just one bottom is given and the bias is  
      // a learned parameter of the layer.)  
      // The initialization for the learned bias parameter.  
      // Default is the zero (0) initialization, resulting in the BiasLayer  
      // initially performing the identity operation.  
      optional FillerParameter filler = 3;  
    }  
    //对比度损失参数  
    message ContrastiveLossParameter {  
      // margin for dissimilar pair  
      optional float margin = 1 [default = 1.0];  
      // The first implementation of this cost did not exactly match the cost of  
      // Hadsell et al 2006 -- using (margin - d^2) instead of (margin - d)^2.  
      // legacy_version = false (the default) uses (margin - d)^2 as proposed in the  
      // Hadsell paper. New models should probably use this version.  
      // legacy_version = true uses (margin - d^2). This is kept to support /  
      // reproduce existing models and results  
      optional bool legacy_version = 2 [default = false];  
    }  
    //卷积参数  
    message ConvolutionParameter {  
      optional uint32 num_output = 1; // The number of outputs for the layer  
      optional bool bias_term = 2 [default = true]; // whether to have bias terms  
    
      // Pad, kernel size, and stride are all given as a single value for equal  
      // dimensions in all spatial dimensions, or once per spatial dimension.  
      repeated uint32 pad = 3; // The padding size; defaults to 0  
      repeated uint32 kernel_size = 4; // The kernel size  
      repeated uint32 stride = 6; // The stride; defaults to 1  
      // Factor used to dilate the kernel, (implicitly) zero-filling the resulting  
      // holes. (Kernel dilation is sometimes referred to by its use in the  
      // algorithme 脿 trous from Holschneider et al. 1987.)  
      repeated uint32 dilation = 18; // The dilation; defaults to 1  
    
      // For 2D convolution only, the *_h and *_w versions may also be used to  
      // specify both spatial dimensions.  
      optional uint32 pad_h = 9 [default = 0]; // The padding height (2D only)  
      optional uint32 pad_w = 10 [default = 0]; // The padding width (2D only)  
      optional uint32 kernel_h = 11; // The kernel height (2D only)  
      optional uint32 kernel_w = 12; // The kernel width (2D only)  
      optional uint32 stride_h = 13; // The stride height (2D only)  
      optional uint32 stride_w = 14; // The stride width (2D only)  
    
      optional uint32 group = 5 [default = 1]; // The group size for group conv  
    
      optional FillerParameter weight_filler = 7; // The filler for the weight  
      optional FillerParameter bias_filler = 8; // The filler for the bias  
      enum Engine {  
        DEFAULT = 0; //CPU  
        CAFFE = 1;   //GPU-CUDA  
        CUDNN = 2;   //GPU-CUDA-CUDNN  
      }  
      optional Engine engine = 15 [default = DEFAULT];  
    
      // The axis to interpret as "channels" when performing convolution.  
      // Preceding dimensions are treated as independent inputs;  
      // succeeding dimensions are treated as "spatial".  
      // With (N, C, H, W) inputs, and axis == 1 (the default), we perform  
      // N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for  
      // groups g>1) filters across the spatial axes (H, W) of the input.  
      // With (N, C, D, H, W) inputs, and axis == 1, we perform  
      // N independent 3D convolutions, sliding (C/g)-channels  
      // filters across the spatial axes (D, H, W) of the input.  
      optional int32 axis = 16 [default = 1];  
    
      // Whether to force use of the general ND convolution, even if a specific  
      // implementation for blobs of the appropriate number of spatial dimensions  
      // is available. (Currently, there is only a 2D-specific convolution  
      // implementation; for input blobs with num_axes != 2, this option is  
      // ignored and the ND implementation will be used.)  
      optional bool force_nd_im2col = 17 [default = false];  
    }  
    //裁剪参数  
    message CropParameter {  
      // To crop, elements of the first bottom are selected to fit the dimensions  
      // of the second, reference bottom. The crop is configured by  
      // - the crop `axis` to pick the dimensions for cropping  
      // - the crop `offset` to set the shift for all/each dimension  
      // to align the cropped bottom with the reference bottom.  
      // All dimensions up to but excluding `axis` are preserved, while  
      // the dimensions including and trailing `axis` are cropped.  
      // If only one `offset` is set, then all dimensions are offset by this amount.  
      // Otherwise, the number of offsets must equal the number of cropped axes to  
      // shift the crop in each dimension accordingly.  
      // Note: standard dimensions are N,C,H,W so the default is a spatial crop,  
      // and `axis` may be negative to index from the end (e.g., -1 for the last  
      // axis).  
      optional int32 axis = 1 [default = 2];  
      repeated uint32 offset = 2;  
    }  
    //数据参数  
    message DataParameter {  
      enum DB {  
        LEVELDB = 0;  
        LMDB = 1;  
      }  
      // Specify the data source.  
      optional string source = 1;  
      // Specify the batch size.  
      optional uint32 batch_size = 4;  
      // The rand_skip variable is for the data layer to skip a few data points  
      // to avoid all asynchronous sgd clients to start at the same point. The skip  
      // point would be set as rand_skip * rand(0,1). Note that rand_skip should not  
      // be larger than the number of keys in the database.  
      // DEPRECATED. Each solver accesses a different subset of the database.  
      optional uint32 rand_skip = 7 [default = 0];  
      optional DB backend = 8 [default = LEVELDB];  
      // DEPRECATED. See TransformationParameter. For data pre-processing, we can do  
      // simple scaling and subtracting the data mean, if provided. Note that the  
      // mean subtraction is always carried out before scaling.  
      optional float scale = 2 [default = 1];  
      optional string mean_file = 3;  
      // DEPRECATED. See TransformationParameter. Specify if we would like to randomly  
      // crop an image.  
      optional uint32 crop_size = 5 [default = 0];  
      // DEPRECATED. See TransformationParameter. Specify if we want to randomly mirror  
      // data.  
      optional bool mirror = 6 [default = false];  
      // Force the encoded image to have 3 color channels  
      optional bool force_encoded_color = 9 [default = false];  
      // Prefetch queue (Number of batches to prefetch to host memory, increase if  
      // data access bandwidth varies).  
      optional uint32 prefetch = 10 [default = 4];  
    }  
    //DropoutParameter参数  
    message DropoutParameter {  
      optional float dropout_ratio = 1 [default = 0.5]; // dropout ratio  
      optional bool scale_train = 2 [default = true];  // scale train or test phase  
    }  
    
    // DummyDataLayer fills any number of arbitrarily shaped blobs with random  
    // (or constant) data generated by "Fillers" (see "message FillerParameter").  
    message DummyDataParameter {  
      // This layer produces N >= 1 top blobs.  DummyDataParameter must specify 1 or N  
      // shape fields, and 0, 1 or N data_fillers.  
      //  
      // If 0 data_fillers are specified, ConstantFiller with a value of 0 is used.  
      // If 1 data_filler is specified, it is applied to all top blobs.  If N are  
      // specified, the ith is applied to the ith top blob.  
      repeated FillerParameter data_filler = 1;  
      repeated BlobShape shape = 6;  
    
      // 4D dimensions -- deprecated.  Use "shape" instead.  
      repeated uint32 num = 2;  
      repeated uint32 channels = 3;  
      repeated uint32 height = 4;  
      repeated uint32 width = 5;  
    }  
    
    message EltwiseParameter {  
      enum EltwiseOp {  
        PROD = 0;  
        SUM = 1;  
        MAX = 2;  
      }  
      optional EltwiseOp operation = 1 [default = SUM]; // element-wise operation  
      repeated float coeff = 2; // blob-wise coefficient for SUM operation  
    
      // Whether to use an asymptotically slower (for >2 inputs) but stabler method  
      // of computing the gradient for the PROD operation. (No effect for SUM op.)  
      optional bool stable_prod_grad = 3 [default = true];  
    }  
    
    // Message that stores parameters used by ELULayer  
    message ELUParameter {  
      // Described in:  
      // Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and Accurate  
      // Deep Network Learning by Exponential Linear Units (ELUs). arXiv  
      optional float alpha = 1 [default = 1];  
    }  
    
    // Message that stores parameters used by EmbedLayer  
    message EmbedParameter {  
      optional uint32 num_output = 1; // The number of outputs for the layer  
      // The input is given as integers to be interpreted as one-hot  
      // vector indices with dimension num_input.  Hence num_input should be  
      // 1 greater than the maximum possible input value.  
      optional uint32 input_dim = 2;  
    
      optional bool bias_term = 3 [default = true]; // Whether to use a bias term  
      optional FillerParameter weight_filler = 4; // The filler for the weight  
      optional FillerParameter bias_filler = 5; // The filler for the bias  
    
    }  
    
    // Message that stores parameters used by ExpLayer  
    message ExpParameter {  
      // ExpLayer computes outputs y = base ^ (shift + scale * x), for base > 0.  
      // Or if base is set to the default (-1), base is set to e,  
      // so y = exp(shift + scale * x).  
      optional float base = 1 [default = -1.0];  
      optional float scale = 2 [default = 1.0];  
      optional float shift = 3 [default = 0.0];  
    }  
    
    /// Message that stores parameters used by FlattenLayer  
    message FlattenParameter {  
      // The first axis to flatten: all preceding axes are retained in the output.  
      // May be negative to index from the end (e.g., -1 for the last axis).  
      optional int32 axis = 1 [default = 1];  
    
      // The last axis to flatten: all following axes are retained in the output.  
      // May be negative to index from the end (e.g., the default -1 for the last  
      // axis).  
      optional int32 end_axis = 2 [default = -1];  
    }  
    
    // Message that stores parameters used by HDF5DataLayer  
    message HDF5DataParameter {  
      // Specify the data source.  
      optional string source = 1;  
      // Specify the batch size.  
      optional uint32 batch_size = 2;  
    
      // Specify whether to shuffle the data.  
      // If shuffle == true, the ordering of the HDF5 files is shuffled,  
      // and the ordering of data within any given HDF5 file is shuffled,  
      // but data between different files are not interleaved; all of a file's  
      // data are output (in a random order) before moving onto another file.  
      optional bool shuffle = 3 [default = false];  
    }  
    
    message HDF5OutputParameter {  
      optional string file_name = 1;  
    }  
    
    message HingeLossParameter {  
      enum Norm {  
        L1 = 1;  
        L2 = 2;  
      }  
      // Specify the Norm to use L1 or L2  
      optional Norm norm = 1 [default = L1];  
    }  
    //数据集参数  
    message ImageDataParameter {  
      // 指定数据源文件  
      optional string source = 1;  
      // 指定批量大小batchSize  
      optional uint32 batch_size = 4 [default = 1];  
      // The rand_skip variable is for the data layer to skip a few data points  
      // to avoid all asynchronous sgd clients to start at the same point. The skip  
      // point would be set as rand_skip * rand(0,1). Note that rand_skip should not  
      // be larger than the number of keys in the database.  
      // 随机跳过rand_skip * rand(0,1)个样本,以使得SGD从不同状态点启动  
      optional uint32 rand_skip = 7 [default = 0];  
      // Whether or not ImageLayer should shuffle the list of files at every epoch.是否在每个回合都混排图片,默认否  
      optional bool shuffle = 8 [default = false];  
      // It will also resize images if new_height or new_width are not zero.  
      // 若以下2个值不为0,则将图片缩放为下面的形状  
      optional uint32 new_height = 9 [default = 0];  
      optional uint32 new_width = 10 [default = 0];  
      // Specify if the images are color or gray指明是彩色还是灰度图  
      optional bool is_color = 11 [default = true];  
      // DEPRECATED. See TransformationParameter. For data pre-processing, we can do  
      // simple scaling and subtracting the data mean, if provided. Note that the  
      // mean subtraction is always carried out before scaling.  
      // 旧版--图片预处理参数,新版用TransformationParameter  
      optional float scale = 2 [default = 1];  
      optional string mean_file = 3;  
      // DEPRECATED. See TransformationParameter. Specify if we would like to randomly  
      // crop an image.  
      optional uint32 crop_size = 5 [default = 0];  
      // DEPRECATED. See TransformationParameter. Specify if we want to randomly mirror  
      // data.  
      optional bool mirror = 6 [default = false];  
      optional string root_folder = 12 [default = ""];  
    }  
    //信息增益损失参数  
    message InfogainLossParameter {  
      // Specify the infogain matrix source.  
      optional string source = 1;  
    }  
    //内积参数  
    message InnerProductParameter {  
      optional uint32 num_output = 1; // The number of outputs for the layer  
      optional bool bias_term = 2 [default = true]; // whether to have bias terms  
      optional FillerParameter weight_filler = 3; // The filler for the weight  
      optional FillerParameter bias_filler = 4; // The filler for the bias  
    
      // The first axis to be lumped into a single inner product computation;  
      // all preceding axes are retained in the output.  
      // May be negative to index from the end (e.g., -1 for the last axis).  
      optional int32 axis = 5 [default = 1];  
      // Specify whether to transpose the weight matrix or not.  
      // If transpose == true, any operations will be performed on the transpose  
      // of the weight matrix. The weight matrix itself is not going to be transposed  
      // but rather the transfer flag of operations will be toggled accordingly.  
      optional bool transpose = 6 [default = false];  
    }  
    //输入参数  
    message InputParameter {  
      // This layer produces N >= 1 top blob(s) to be assigned manually.  
      // Define N shapes to set a shape for each top.  
      // Define 1 shape to set the same shape for every top.  
      // Define no shape to defer to reshaping manually.  
      // 此层管理输入(top)blobs,当输入blob个数N≥1,可使其自动分配。  
      // 设定N个shapes为N个输入blob;设定1个shape使得全部输入blob形状相同;  
      // 不设定,可手动调整。  
      // 可查看.modelsvlc_reference_caffenetdeploy.prototxt中指定1个shape  
      repeated BlobShape shape = 1;  
    }  
    
    // LogLayer的参数  
    message LogParameter {  
      // LogLayer computes outputs y = log_base(shift + scale * x), for base > 0.  
      // Or if base is set to the default (-1), base is set to e,  
      // so y = ln(shift + scale * x) = log_e(shift + scale * x)  
      optional float base = 1 [default = -1.0];  
      optional float scale = 2 [default = 1.0];  
      optional float shift = 3 [default = 0.0];  
    }  
    
    // LRNLayer层参数  
    message LRNParameter {  
      optional uint32 local_size = 1 [default = 5];  
      optional float alpha = 2 [default = 1.];  
      optional float beta = 3 [default = 0.75];  
      enum NormRegion {  
        ACROSS_CHANNELS = 0;  
        WITHIN_CHANNEL = 1;  
      }  
      optional NormRegion norm_region = 4 [default = ACROSS_CHANNELS];  
      optional float k = 5 [default = 1.];  
      enum Engine {  
        DEFAULT = 0;  
        CAFFE = 1;  
        CUDNN = 2;  
      }  
      optional Engine engine = 6 [default = DEFAULT];  
    }  
    
    //数据内存占用参数  
    message MemoryDataParameter {  
      optional uint32 batch_size = 1;  
      optional uint32 channels = 2;  
      optional uint32 height = 3;  
      optional uint32 width = 4;  
    }  
    //MVN参数{均值,方差,跨通道}(mean-varance-normalization)  
    message MVNParameter {  
      // This parameter can be set to false to normalize mean only  
      // 设定为false时仅归一化均值,否则包括方差  
      optional bool normalize_variance = 1 [default = true];  
    
      // This parameter can be set to true to perform DNN-like MVN  
      // 执行跨通道归一化,类似于DNN的MVN;默认否,只执行Spatial内归一化。  
      optional bool across_channels = 2 [default = false];  
    
      // Epsilon for not dividing by zero while normalizing variance  
      // 防止除0的极小数  
      optional float eps = 3 [default = 1e-9];  
    }  
    
    //??  
    message ParameterParameter {  
      optional BlobShape shape = 1;  
    }  
    //池化层参数  
    message PoolingParameter {  
      enum PoolMethod {  
        MAX = 0;  
        AVE = 1;  
        STOCHASTIC = 2;  
      }  
      optional PoolMethod pool = 1 [default = MAX]; // The pooling method  
      // Pad, kernel size, and stride are all given as a single value for equal  
      // dimensions in height and width or as Y, X pairs.  
      optional uint32 pad = 4 [default = 0]; // The padding size (equal in Y, X)  
      optional uint32 pad_h = 9 [default = 0]; // The padding height  
      optional uint32 pad_w = 10 [default = 0]; // The padding width  
      optional uint32 kernel_size = 2; // The kernel size (square)  
      optional uint32 kernel_h = 5; // The kernel height  
      optional uint32 kernel_w = 6; // The kernel width  
      optional uint32 stride = 3 [default = 1]; // The stride (equal in Y, X)  
      optional uint32 stride_h = 7; // The stride height  
      optional uint32 stride_w = 8; // The stride width  
      enum Engine {  
        DEFAULT = 0;  
        CAFFE = 1;  
        CUDNN = 2;  
      }  
      optional Engine engine = 11 [default = DEFAULT];  
      // If global_pooling then it will pool over the size of the bottom by doing  
      // kernel_h = bottom->height and kernel_w = bottom->width  
      optional bool global_pooling = 12 [default = false];  
    }  
    
    message PowerParameter {  
      // PowerLayer computes outputs y = (shift + scale * x) ^ power.  
      optional float power = 1 [default = 1.0];  
      optional float scale = 2 [default = 1.0];  
      optional float shift = 3 [default = 0.0];  
    }  
    //Python参数  
    message PythonParameter {  
      optional string module = 1;  
      optional string layer = 2;  
      // This value is set to the attribute `param_str` of the `PythonLayer` object  
      // in Python before calling the `setup()` method. This could be a number,  
      // string, dictionary in Python dict format, JSON, etc. You may parse this  
      // string in `setup` method and use it in `forward` and `backward`.  
      optional string param_str = 3 [default = ''];  
      // Whether this PythonLayer is shared among worker solvers during data parallelism.  
      // If true, each worker solver sequentially run forward from this layer.  
      // This value should be set true if you are using it as a data layer.  
      optional bool share_in_parallel = 4 [default = false];  
    }  
    
    // RecurrentLayer参数  
    message RecurrentParameter {  
      // 输出表示的维度必须是非0的  
      optional uint32 num_output = 1 [default = 0];  
    
      optional FillerParameter weight_filler = 2; //weight权值参数  
      optional FillerParameter bias_filler = 3;   //bias偏置参数  
    
      // Whether to enable displaying debug_info in the unrolled recurrent net.  
      // 在展开RCNN时是否打印deuginfo  
      optional bool debug_info = 4 [default = false];  
    
      // Whether to add as additional inputs (bottoms) the initial hidden state  
      // blobs, and add as additional outputs (tops) the final timestep hidden state  
      // blobs.  The number of additional bottom/top blobs required depends on the  
      // recurrent architecture -- e.g., 1 for RNNs, 2 for LSTMs.  
      // 是否添加初始化的隐藏blobs作为额外输入(bottoms),以及添加最终的timestep隐  
      // 藏blobs作为额外输出(tops)。  
      optional bool expose_hidden = 5 [default = false];  
    }  
    
    // ReductionLayer参数  
    message ReductionParameter {  
      enum ReductionOp {  
        SUM = 1;  
        ASUM = 2;  
        SUMSQ = 3;  
        MEAN = 4;  
      }  
    
      optional ReductionOp operation = 1 [default = SUM]; // reduction operation  
    
      // The first axis to reduce to a scalar -- may be negative to index from the  
      // end (e.g., -1 for the last axis).  
      // (Currently, only reduction along ALL "tail" axes is supported; reduction  
      // of axis M through N, where N < num_axes - 1, is unsupported.)  
      // Suppose we have an n-axis bottom Blob with shape:  
      //     (d0, d1, d2, ..., d(m-1), dm, d(m+1), ..., d(n-1)).  
      // If axis == m, the output Blob will have shape  
      //     (d0, d1, d2, ..., d(m-1)),  
      // and the ReductionOp operation is performed (d0 * d1 * d2 * ... * d(m-1))  
      // times, each including (dm * d(m+1) * ... * d(n-1)) individual data.  
      // If axis == 0 (the default), the output Blob always has the empty shape  
      // (count 1), performing reduction across the entire input --  
      // often useful for creating new loss functions.  
      optional int32 axis = 2 [default = 0];  
    
      optional float coeff = 3 [default = 1.0]; // coefficient for output  
    }  
    
    // ReLULayer参数  
    message ReLUParameter {  
      // 允许非0斜率可以加速优化:  
      // Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities  
      // improve neural network acoustic models. In ICML Workshop on Deep Learning  
      // for Audio, Speech, and Language Processing.  
      optional float negative_slope = 1 [default = 0];  
      enum Engine {  
        DEFAULT = 0;  
        CAFFE = 1;  
        CUDNN = 2;  
      }  
      optional Engine engine = 2 [default = DEFAULT];  
    }  
    
    message ReshapeParameter {  
      // Specify the output dimensions. If some of the dimensions are set to 0,  
      // the corresponding dimension from the bottom layer is used (unchanged).  
      // Exactly one dimension may be set to -1, in which case its value is  
      // inferred from the count of the bottom blob and the remaining dimensions.  
      // For example, suppose we want to reshape a 2D blob "input" with shape 2 x 8:  
      //  
      //   layer {  
      //     type: "Reshape" bottom: "input" top: "output"  
      //     reshape_param { ... }  
      //   }  
      //  
      // If "input" is 2D with shape 2 x 8, then the following reshape_param  
      // specifications are all equivalent, producing a 3D blob "output" with shape  
      // 2 x 2 x 4:  
      //  
      //   reshape_param { shape { dim:  2  dim: 2  dim:  4 } }  
      //   reshape_param { shape { dim:  0  dim: 2  dim:  4 } }  
      //   reshape_param { shape { dim:  0  dim: 2  dim: -1 } }  
      //   reshape_param { shape { dim:  0  dim:-1  dim:  4 } }  
      //  
      optional BlobShape shape = 1;  
    
      // axis and num_axes control the portion of the bottom blob's shape that are  
      // replaced by (included in) the reshape. By default (axis == 0 and  
      // num_axes == -1), the entire bottom blob shape is included in the reshape,  
      // and hence the shape field must specify the entire output shape.  
      //  
      // axis may be non-zero to retain some portion of the beginning of the input  
      // shape (and may be negative to index from the end; e.g., -1 to begin the  
      // reshape after the last axis, including nothing in the reshape,  
      // -2 to include only the last axis, etc.).  
      //  
      // For example, suppose "input" is a 2D blob with shape 2 x 8.  
      // Then the following ReshapeLayer specifications are all equivalent,  
      // producing a blob "output" with shape 2 x 2 x 4:  
      //  
      //   reshape_param { shape { dim: 2  dim: 2  dim: 4 } }  
      //   reshape_param { shape { dim: 2  dim: 4 } axis:  1 }  
      //   reshape_param { shape { dim: 2  dim: 4 } axis: -3 }  
      //  
      // num_axes specifies the extent of the reshape.  
      // If num_axes >= 0 (and axis >= 0), the reshape will be performed only on  
      // input axes in the range [axis, axis+num_axes].  
      // num_axes may also be -1, the default, to include all remaining axes  
      // (starting from axis).  
      //  
      // For example, suppose "input" is a 2D blob with shape 2 x 8.  
      // Then the following ReshapeLayer specifications are equivalent,  
      // producing a blob "output" with shape 1 x 2 x 8.  
      //  
      //   reshape_param { shape { dim:  1  dim: 2  dim:  8 } }  
      //   reshape_param { shape { dim:  1  dim: 2  }  num_axes: 1 }  
      //   reshape_param { shape { dim:  1  }  num_axes: 0 }  
      //  
      // On the other hand, these would produce output blob shape 2 x 1 x 8:  
      //  
      //   reshape_param { shape { dim: 2  dim: 1  dim: 8  }  }  
      //   reshape_param { shape { dim: 1 }  axis: 1  num_axes: 0 }  
      //  
      optional int32 axis = 2 [default = 0];  
      optional int32 num_axes = 3 [default = -1];  
    }  
    
    // ROIPoolingLayer参数  
    message ROIPoolingParameter {  
      // Pad, kernel size, and stride are all given as a single value for equal  
      // dimensions in height and width or as Y, X pairs.  
      optional uint32 pooled_h = 1 [default = 0]; // The pooled output height  
      optional uint32 pooled_w = 2 [default = 0]; // The pooled output width  
      // Multiplicative spatial scale factor to translate ROI coords from their  
      // input scale to the scale used when pooling  
      optional float spatial_scale = 3 [default = 1];  
    }  
    //ScaleParameter参数  
    message ScaleParameter {  
      // The first axis of bottom[0] (the first input Blob) along which to apply  
      // bottom[1] (the second input Blob).  May be negative to index from the end  
      // (e.g., -1 for the last axis).  
      // ???????????????????????????????  
      // 第一个输入Blob的首axis,被应用到第二个输入Blob。但第2个Blob的形状可能不同  
      // For example, if bottom[0] is 4D with shape 100x3x40x60, the output  
      // top[0] will have the same shape, and bottom[1] may have any of the  
      // following shapes (for the given value of axis):  
      //    (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60  
      //    (axis == 1 == -3)          3;     3x40;     3x40x60  
      //    (axis == 2 == -2)                   40;       40x60  
      //    (axis == 3 == -1)                                60  
      // Furthermore,bottom[1]may have the empty shape (regardless of the value of  
      // "axis") -- a scalar multiplier.  
      optional int32 axis = 1 [default = 1];  
    
      // (num_axes is ignored unless just one bottom is given and the scale is  
      // a learned parameter of the layer.  Otherwise, num_axes is determined by the  
      // number of axes by the second bottom.)  
      // The number of axes of the input (bottom[0]) covered by the scale  
      // parameter, or -1 to cover all axes of bottom[0] starting from `axis`.  
      // Set num_axes := 0, to multiply with a zero-axis Blob: a scalar.  
      optional int32 num_axes = 2 [default = 1];  
    
      // (filler is ignored unless just one bottom is given and the scale is  
      // a learned parameter of the layer.)  
      // The initialization for the learned scale parameter.  
      // Default is the unit (1) initialization, resulting in the ScaleLayer  
      // initially performing the identity operation.  
      optional FillerParameter filler = 3;  
    
      // Whether to also learn a bias (equivalent to a ScaleLayer+BiasLayer, but  
      // may be more efficient).  Initialized with bias_filler (defaults to 0).  
      optional bool bias_term = 4 [default = false];  
      optional FillerParameter bias_filler = 5;  
    }  
    //SigmoidParameter参数  
    message SigmoidParameter {  
      enum Engine {  
        DEFAULT = 0;  
        CAFFE = 1;  
        CUDNN = 2;  
      }  
      optional Engine engine = 1 [default = DEFAULT];  
    }  
    //SliceParameter参数  
    message SliceParameter {  
      // The axis along which to slice -- may be negative to index from the end  
      // (e.g., -1 for the last axis).  
      // By default, SliceLayer concatenates blobs along the "channels" axis (1).  
      optional int32 axis = 3 [default = 1];  
      repeated uint32 slice_point = 2;  
    
      // DEPRECATED: alias for "axis" -- does not support negative indexing.  
      optional uint32 slice_dim = 1 [default = 1];  
    }  
    //SmoothL1LossParameter参数  
    message SmoothL1LossParameter {  
      // SmoothL1Loss(x) =  
      //   0.5 * (sigma * x) ** 2    -- if x < 1.0 / sigma / sigma  
      //   |x| - 0.5 / sigma / sigma -- otherwise  
      optional float sigma = 1 [default = 1];  
    }  
    
    //SoftmaxLayer, SoftmaxWithLossLayer的参数  
    message SoftmaxParameter {  
      enum Engine {  
        DEFAULT = 0;  
        CAFFE = 1;  
        CUDNN = 2;  
      }  
      optional Engine engine = 1 [default = DEFAULT];  
    
      // The axis along which to perform the softmax -- may be negative to index  
      // from the end (e.g., -1 for the last axis).  
      // Any other axes will be evaluated as independent softmaxes.  
      // 沿着哪一个轴运用softmax,该轴上必须是相互独立的分量。  
      // eg.预测时对类标签运用,计算损失时对每个类的对数损失运用。  
      optional int32 axis = 2 [default = 1];  
    }  
    //TanHParameter参数  
    message TanHParameter {  
      enum Engine {  
        DEFAULT = 0;  
        CAFFE = 1;  
        CUDNN = 2;  
      }  
      optional Engine engine = 1 [default = DEFAULT];  
    }  
    
    // TileLayer参数  
    message TileParameter {  
      // The index of the axis to tile.  
      optional int32 axis = 1 [default = 1];  
    
      // The number of copies (tiles) of the blob to output.  
      optional int32 tiles = 2;  
    }  
    
    // ThresholdLayer参数  
    message ThresholdParameter {  
      optional float threshold = 1 [default = 0]; // Strictly positive values  
    }  
    
    // MILLayer参数  
    message MILParameter {  
      enum MILType {  
        MAX = 0;  
        NOR = 1;  
      }  
      optional MILType type = 1 [default = MAX]; // The MIL method  
    }  
    
    //窗口数据参数:专用于目标检测或分割  
    message WindowDataParameter {  
      // Specify the data source.指定数据源  
      optional string source = 1;  
      // 数据预处理:尺度缩放,去均值等。去均值应在缩放前执行。  
      optional float scale = 2 [default = 1];  
      optional string mean_file = 3;  
      // 指定批处理的数据量  
      optional uint32 batch_size = 4;  
      // 是否随机裁剪  
      optional uint32 crop_size = 5 [default = 0];  
      // 是否镜像变换  
      optional bool mirror = 6 [default = false];  
      // Foreground (object) overlap threshold 前景目标重合阈值  
      optional float fg_threshold = 7 [default = 0.5];  
      // Background (non-object) overlap threshold背景重合阈值  
      optional float bg_threshold = 8 [default = 0.5];  
      // Fraction of batch that should be foreground objects  
      // 前景目标在batch中的比例  
      optional float fg_fraction = 9 [default = 0.25];  
      // Amount of contextual padding to add around a window  
      // (used only by the window_data_layer)  
      // 窗口周边需要添加的上下文padding  
      optional uint32 context_pad = 10 [default = 0];  
      // Mode for cropping out a detection window  
      // warp: cropped window is warped to a fixed size and aspect ratio  
      // square: the tightest square around the window is cropped  
      // mode:裁剪出一个检测窗口的模式  
      // warp:裁剪窗口被扭曲为某个固定尺寸和形状  
      // square:裁剪窗口周边最紧?的方框  
      optional string crop_mode = 11 [default = "warp"];  
      // cache_images: will load all images in memory for faster access  
      //将全部图像(裁剪得到的小图像)放入内存以便快速存取  
      optional bool cache_images = 12 [default = false];  
      // append root_folder to locate images  
      // 添加根文件夹以定位文件  
      optional string root_folder = 13 [default = ""];  
    }  
    //MILDataParameter参数  
    message MILDataParameter {  
      // Specify the data source.  
      optional string source = 1;  
    
      // Number of scales for each image  
      optional uint32 num_scales = 2 [default = 1];  
    
      // Side length ratio between neighbouring scales  
      optional float scale_factor = 6 [default = 1];  
    
      // Number of channels in the image  
      optional uint32 channels = 4 [default = 3];  
    
      // Specify the number of images per batch  
      optional uint32 images_per_batch = 3;  
      // Specify the number of classes  
      optional uint32 n_classes = 5;  
      // specify the box_dir and label_dir  
      optional string label_file = 7;  
    
      // Root directory which contains all the images  
      optional string root_dir = 11;  
      // Extention for the file  
      optional string ext = 12;  
    
      // To randomize or not  
      optional bool randomize = 13 [default = true];  
    }  
    
    //SPP参数,源于论文SPPNet  
    message SPPParameter {  
      enum PoolMethod {  
        MAX = 0;  
        AVE = 1;  
        STOCHASTIC = 2;  
      } //池化方法,获得金字塔的方法,最大/平均/随机  
      optional uint32 pyramid_height = 1; //金字塔高度  
      optional PoolMethod pool = 2 [default = MAX]; // The pooling method  
      enum Engine {  
        DEFAULT = 0;  
        CAFFE = 1;  
        CUDNN = 2;  
      }  
      optional Engine engine = 6 [default = DEFAULT];  
    }  
    
    // DEPRECATED: use LayerParameter.  
    // 旧版:使用层参数。 V1可能是第一版version1的意思  
    message V1LayerParameter {  
      repeated string bottom = 2;  //输入  
      repeated string top = 3;     //输出  
      optional string name = 4;    //层名称  
      repeated NetStateRule include = 32; //运行时状态:包含  
      repeated NetStateRule exclude = 33; //运行时状态:不包含  
      enum LayerType {             //层类型  
        NONE = 0;  
        ABSVAL = 35;  
        ACCURACY = 1;  
        ARGMAX = 30;  
        BNLL = 2;  
        CONCAT = 3;  
        CONTRASTIVE_LOSS = 37;  
        CONVOLUTION = 4;  
        DATA = 5;  
        DECONVOLUTION = 39;  
        DROPOUT = 6;  
        DUMMY_DATA = 32;  
        EUCLIDEAN_LOSS = 7;  
        ELTWISE = 25;  
        EXP = 38;  
        FLATTEN = 8;  
        HDF5_DATA = 9;  
        HDF5_OUTPUT = 10;  
        HINGE_LOSS = 28;  
        IM2COL = 11;  
        IMAGE_DATA = 12;  
        INFOGAIN_LOSS = 13;  
        INNER_PRODUCT = 14;  
        LRN = 15;  
        MEMORY_DATA = 29;  
        MULTINOMIAL_LOGISTIC_LOSS = 16;  
        MVN = 34;  
        POOLING = 17;  
        POWER = 26;  
        RELU = 18;  
        SIGMOID = 19;  
        SIGMOID_CROSS_ENTROPY_LOSS = 27;  
        SILENCE = 36;  
        SOFTMAX = 20;  
        SOFTMAX_LOSS = 21;  
        SPLIT = 22;  
        SLICE = 33;  
        TANH = 23;  
        WINDOW_DATA = 24;  
        THRESHOLD = 31;  
      }  
      optional LayerType type = 5;  
      repeated BlobProto blobs = 6;  
      repeated string param = 1001;  
      repeated DimCheckMode blob_share_mode = 1002;  
      enum DimCheckMode {  
        STRICT = 0;  
        PERMISSIVE = 1;  
      }  
      repeated float blobs_lr = 7;  
      repeated float weight_decay = 8;  
      repeated float loss_weight = 35;  
      optional AccuracyParameter accuracy_param = 27;  
      optional ArgMaxParameter argmax_param = 23;  
      optional ConcatParameter concat_param = 9;  
      optional ContrastiveLossParameter contrastive_loss_param = 40;  
      optional ConvolutionParameter convolution_param = 10;  
      optional DataParameter data_param = 11;  
      optional DropoutParameter dropout_param = 12;  
      optional DummyDataParameter dummy_data_param = 26;  
      optional EltwiseParameter eltwise_param = 24;  
      optional ExpParameter exp_param = 41;  
      optional HDF5DataParameter hdf5_data_param = 13;  
      optional HDF5OutputParameter hdf5_output_param = 14;  
      optional HingeLossParameter hinge_loss_param = 29;  
      optional ImageDataParameter image_data_param = 15;  
      optional InfogainLossParameter infogain_loss_param = 16;  
      optional InnerProductParameter inner_product_param = 17;  
      optional LRNParameter lrn_param = 18;  
      optional MemoryDataParameter memory_data_param = 22;  
      optional MVNParameter mvn_param = 34;  
      optional PoolingParameter pooling_param = 19;  
      optional PowerParameter power_param = 21;  
      optional ReLUParameter relu_param = 30;  
      optional SigmoidParameter sigmoid_param = 38;  
      optional SoftmaxParameter softmax_param = 39;  
      optional SliceParameter slice_param = 31;  
      optional TanHParameter tanh_param = 37;  
      optional ThresholdParameter threshold_param = 25;  
      optional WindowDataParameter window_data_param = 20;  
      optional TransformationParameter transform_param = 36;  
      optional LossParameter loss_param = 42;  
      optional V0LayerParameter layer = 1;  
    }  
    
    // DEPRECATED: V0LayerParameter is the old way of specifying layer parameters  
    // in Caffe.  We keep this message type around for legacy support.  
    // 旧版本:V0LayerParameter version-0版  
    message V0LayerParameter {  
      optional string name = 1; // the layer name  
      optional string type = 2; // the string to specify the layer type  
    
      // Parameters to specify layers with inner products.  
      optional uint32 num_output = 3; // The number of outputs for the layer  
      optional bool biasterm = 4 [default = true]; // whether to have bias terms  
      optional FillerParameter weight_filler = 5; // The filler for the weight  
      optional FillerParameter bias_filler = 6; // The filler for the bias  
    
      optional uint32 pad = 7 [default = 0]; // The padding size  
      optional uint32 kernelsize = 8; // The kernel size  
      optional uint32 group = 9 [default = 1]; // The group size for group conv  
      optional uint32 stride = 10 [default = 1]; // The stride  
      enum PoolMethod {  
        MAX = 0;  
        AVE = 1;  
        STOCHASTIC = 2;  
      }  
      optional PoolMethod pool = 11 [default = MAX]; // The pooling method  
      optional float dropout_ratio = 12 [default = 0.5]; // dropout ratio  
    
      optional uint32 local_size = 13 [default = 5]; // for local response norm  
      optional float alpha = 14 [default = 1.]; // for local response norm  
      optional float beta = 15 [default = 0.75]; // for local response norm  
      optional float k = 22 [default = 1.];  
    
      // For data layers, specify the data source  
      optional string source = 16;  
      // For data pre-processing, we can do simple scaling and subtracting the  
      // data mean, if provided. Note that the mean subtraction is always carried  
      // out before scaling.  
      optional float scale = 17 [default = 1];  
      optional string meanfile = 18;  
      // For data layers, specify the batch size.  
      optional uint32 batchsize = 19;  
      // For data layers, specify if we would like to randomly crop an image.  
      optional uint32 cropsize = 20 [default = 0];  
      // For data layers, specify if we want to randomly mirror data.  
      optional bool mirror = 21 [default = false];  
    
      // The blobs containing the numeric parameters of the layer  
      repeated BlobProto blobs = 50;  
      // The ratio that is multiplied on the global learning rate. If you want to  
      // set the learning ratio for one blob, you need to set it for all blobs.  
      repeated float blobs_lr = 51;  
      // The weight decay that is multiplied on the global weight decay.  
      repeated float weight_decay = 52;  
    
      // The rand_skip variable is for the data layer to skip a few data points  
      // to avoid all asynchronous sgd clients to start at the same point. The skip  
      // point would be set as rand_skip * rand(0,1). Note that rand_skip should not  
      // be larger than the number of keys in the database.  
      optional uint32 rand_skip = 53 [default = 0];  
    
      // Fields related to detection (det_*)  
      // foreground (object) overlap threshold  
      optional float det_fg_threshold = 54 [default = 0.5];  
      // background (non-object) overlap threshold  
      optional float det_bg_threshold = 55 [default = 0.5];  
      // Fraction of batch that should be foreground objects  
      optional float det_fg_fraction = 56 [default = 0.25];  
    
      // optional bool OBSOLETE_can_clobber = 57 [default = true];  
    
      // Amount of contextual padding to add around a window  
      // (used only by the window_data_layer)  
      optional uint32 det_context_pad = 58 [default = 0];  
    
      // Mode for cropping out a detection window  
      // warp: cropped window is warped to a fixed size and aspect ratio  
      // square: the tightest square around the window is cropped  
      optional string det_crop_mode = 59 [default = "warp"];  
    
      // For ReshapeLayer, one needs to specify the new dimensions.  
      optional int32 new_num = 60 [default = 0];  
      optional int32 new_channels = 61 [default = 0];  
      optional int32 new_height = 62 [default = 0];  
      optional int32 new_width = 63 [default = 0];  
    
      // Whether or not ImageLayer should shuffle the list of files at every epoch.  
      // It will also resize images if new_height or new_width are not zero.  
      optional bool shuffle_images = 64 [default = false];  
    
      // For ConcatLayer, one needs to specify the dimension for concatenation, and  
      // the other dimensions must be the same for all the bottom blobs.  
      // By default it will concatenate blobs along the channels dimension.  
      optional uint32 concat_dim = 65 [default = 1];  
    
      optional HDF5OutputParameter hdf5_output_param = 1001;  
    }  
    //PReLUParameter,源于论文  
    message PReLUParameter {  
      // Parametric ReLU described in K. He et al, Delving Deep into Rectifiers:  
      // Surpassing Human-Level Performance on ImageNet Classification, 2015.  
    
      // Initial value of a_i. Default is a_i=0.25 for all i.  
      optional FillerParameter filler = 1;  
      // Whether or not slope paramters are shared across channels.  
      optional bool channel_shared = 2 [default = false];  
    } 
  • 相关阅读:
    6 网络爬虫引发的问题及Robots协议
    WEB测试方法总结-笔记(转)
    最全的Http协议、get和post请求的整理
    random()函数的应用---面试
    求两个列表的交集、差集、并集---面试
    python中函数参数传递--引用传递(面试)
    linux重定向命令>和>>---面试
    正则表达式re.findall和re.search的使用---面试
    关于可迭代对象的详解
    sorted()函数排序的灵活运用---面试
  • 原文地址:https://www.cnblogs.com/TensorSense/p/7413304.html
Copyright © 2020-2023  润新知