• LeetCode:Distinct Subsequences


    我的LeetCode解题报告索引

    题目链接

    Given a string S and a string T, count the number of distinct subsequences of T in S.

    A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

    Here is an example:
    S = "rabbbit"T = "rabbit"

    Return 3.

    题目大意:删除S中某些位置的字符可以得到T,总共有几种不同的删除方法

    设S的长度为lens,T的长度为lent

    算法1:递归解法,首先,从个字符串S的尾部开始扫描,找到第一个和T最后一个字符相同的位置k,那么有下面两种匹配:a. T的最后一个字符和S[k]匹配,b. T的最后一个字符不和S[k]匹配。a相当于子问题:从S[0...lens-2]中删除几个字符得到T[0...lent-2],b相当于子问题:从S[0...lens-2]中删除几个字符得到T[0...lent-1]。那么总的删除方法等于a、b两种情况的删除方法的和。递归解法代码如下,但是通过大数据会超时:

     1 class Solution {
     2 public:
     3     int numDistinct(string S, string T) {
     4         // IMPORTANT: Please reset any member data you declared, as
     5         // the same Solution instance will be reused for each test case.
     6         return numDistanceRecur(S, S.length()-1, T, T.length()-1);
     7     }
     8     int numDistanceRecur(string &S, int send, string &T, int tend)
     9     {
    10         if(tend < 0)return 1;
    11         else if(send < 0)return 0;
    12         while(send >= 0 && S[send] != T[tend])send--;
    13         if(send < 0)return 0;
    14         return numDistanceRecur(S,send-1,T,tend-1) + numDistanceRecur(S,send-1,T,tend);
    15     }
    16 };
    View Code

    算法2:动态规划,设dp[i][j]是从字符串S[0...i]中删除几个字符得到字符串T[0...j]的不同的删除方法种类,有上面递归的分析可知,动态规划方程如下

    • 如果S[i] = T[j], dp[i][j] = dp[i-1][j-1]+dp[i-1][j]
    • 如果S[i] 不等于 T[j], dp[i][j] = dp[i-1][j]
    • 初始条件:当T为空字符串时,从任意的S删除几个字符得到T的方法为1

    代码如下:                                                                                     本文地址

     1 class Solution {
     2 public:
     3     int numDistinct(string S, string T) {
     4         // IMPORTANT: Please reset any member data you declared, as
     5         // the same Solution instance will be reused for each test case.
     6         int lens = S.length(), lent = T.length();
     7         if(lent == 0)return 1;
     8         else if(lens == 0)return 0;
     9         int dp[lens+1][lent+1];
    10         memset(dp, 0 , sizeof(dp));
    11         for(int i = 0; i <= lens; i++)dp[i][0] = 1;
    12         for(int i = 1; i <= lens; i++)
    13         {
    14             for(int j = 1; j <= lent; j++)
    15             {
    16                 if(S[i-1] == T[j-1])
    17                     dp[i][j] = dp[i-1][j-1]+dp[i-1][j];
    18                 else dp[i][j] = dp[i-1][j];
    19             }
    20         }
    21         return dp[lens][lent];
    22     }
    23 };

    【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3440022.html

  • 相关阅读:
    iOS UIWebView中javascript与Objective-C交互、获取摄像头
    iOS UIWebView中javascript与Objective-C交互、获取摄像头
    android使用webview上传文件(支持相册和拍照)
    在Android浏览器中通过WebView调用相机拍照/选择文件 上传到服务器
    Android 访问权限设置
    perl 登入人人网
    攻击排查脚本
    利用套打和分栏巧妙来做商品价签
    perl 自定义请求头
    获取响应头信息
  • 原文地址:https://www.cnblogs.com/TenosDoIt/p/3440022.html
Copyright © 2020-2023  润新知