• 数据结构(堆):POJ 1442 Black Box


    Black Box
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 10658   Accepted: 4390

    Description

    Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:

    ADD (x): put element x into Black Box;
    GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending.

    Let us examine a possible sequence of 11 transactions:

    Example 1

    N Transaction i Black Box contents after transaction Answer
    (elements are arranged by non-descending)
    1 ADD(3) 0 3
    2 GET 1 3 3
    3 ADD(1) 1 1, 3
    4 GET 2 1, 3 3
    5 ADD(-4) 2 -4, 1, 3
    6 ADD(2) 2 -4, 1, 2, 3
    7 ADD(8) 2 -4, 1, 2, 3, 8
    8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8
    9 GET 3 -1000, -4, 1, 2, 3, 8 1
    10 GET 4 -1000, -4, 1, 2, 3, 8 2
    11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8

    It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.


    Let us describe the sequence of transactions by two integer arrays:


    1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).

    2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).

    The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.

    Input

    Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.

    Output

    Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

    Sample Input

    7 4
    3 1 -4 2 8 -1000 2
    1 2 6 6

    Sample Output

    3
    3
    1
    2
      水题瞬秒……
     1 #include <iostream>
     2 #include <cstring>
     3 #include <cstdio>
     4 #include <queue>
     5 using namespace std;
     6 const int maxn=100010;
     7 int a[maxn],t[maxn],n,m;
     8 priority_queue<int>A;
     9 priority_queue<int,vector<int>,greater<int> >B;
    10 int main(){
    11     scanf("%d%d",&n,&m);
    12     for(int i=1;i<=n;i++)scanf("%d",&a[i]);
    13     for(int i=1;i<=m;i++)scanf("%d",&t[i]);    
    14     for(int i=1,p=0;i<=m;i++){
    15         while(p!=t[i])B.push(a[++p]);
    16         while(A.size()<1ul*i){
    17             A.push(B.top());
    18             B.pop();
    19         }
    20         while(B.size()&&A.top()>B.top()){
    21             A.push(B.top());
    22             B.push(A.top());
    23             A.pop();B.pop();
    24         }
    25         printf("%d
    ",A.top());
    26     }
    27     return 0;
    28 }
  • 相关阅读:
    [CF1106E] 边界有问题
    UOJ 67 新年的毒瘤
    BZOJ 1093 [ZJOI2007]最大半连通子图
    codeforces round#510
    codeforces round#509
    杂谈
    BZOJ 3007 [SDOI2012]拯救小云公主
    BZOJ 1799
    BZOJ 3329
    BZOJ 3209 花神的数论题
  • 原文地址:https://www.cnblogs.com/TenderRun/p/5776261.html
Copyright © 2020-2023  润新知