• 图论(二分图,KM算法):HDU 3488 Tour


    Tour

    Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
    Total Submission(s): 2628    Accepted Submission(s): 1285


    Problem Description
    In the kingdom of Henryy, there are N (2 <= N <= 200) cities, with M (M <= 30000) one-way roads connecting them. You are lucky enough to have a chance to have a tour in the kingdom. The route should be designed as: The route should contain one or more loops. (A loop is a route like: A->B->……->P->A.)
    Every city should be just in one route.
    A loop should have at least two cities. In one route, each city should be visited just once. (The only exception is that the first and the last city should be the same and this city is visited twice.)
    The total distance the N roads you have chosen should be minimized.
     
    Input
    An integer T in the first line indicates the number of the test cases.
    In each test case, the first line contains two integers N and M, indicating the number of the cities and the one-way roads. Then M lines followed, each line has three integers U, V and W (0 < W <= 10000), indicating that there is a road from U to V, with the distance of W.
    It is guaranteed that at least one valid arrangement of the tour is existed.
    A blank line is followed after each test case.
     

    Output

    For each test case, output a line with exactly one integer, which is the minimum total distance.
     
    Sample Input
    1
    6 9
    1 2 5
    2 3 5
    3 1 10
    3 4 12
    4 1 8
    4 6 11
    5 4 7
    5 6 9
    6 5 4
     
    Sample Output
    42
     
       这题就是KM算法的模板。
     1 #include <iostream>
     2 #include <cstring>
     3 #include <cstdio>
     4 using namespace std;
     5 const int maxn=220;
     6 const int INF=2147483647;
     7 int w[maxn][maxn],sx[maxn],sy[maxn],lx[maxn],ly[maxn];
     8 int match[maxn],slack[maxn];
     9 int n,m;
    10 
    11 bool Search(int x){
    12     sx[x]=true;
    13     for(int y=1;y<=n;y++){
    14         if(sy[y])continue;//?
    15         int t=lx[x]+ly[y]-w[x][y];
    16         if(t)
    17             slack[y]=min(slack[y],t);
    18         else{
    19             sy[y]=true;
    20             if(!match[y]||Search(match[y])){
    21                 match[y]=x;
    22                 return true;
    23             }
    24         }
    25     }
    26     return false;
    27 }
    28 
    29 int KM(){
    30     memset(lx,0x80,sizeof(lx));
    31     memset(ly,0,sizeof(ly));
    32     for(int i=1;i<=n;i++)
    33         for(int j=1;j<=n;j++)
    34             lx[i]=max(lx[i],w[i][j]);
    35     
    36     for(int i=1;i<=n;i++){
    37         memset(slack,127,sizeof(slack));
    38         while(true){
    39             memset(sx,0,sizeof(sx));
    40             memset(sy,0,sizeof(sy));
    41             if(Search(i))
    42                 break;
    43             int minn=INF;
    44             for(int j=1;j<=n;j++)
    45                 if(!sy[j]&&minn>slack[j])
    46                     minn=slack[j];
    47             
    48             for(int j=1;j<=n;j++)
    49                 if(sx[j])
    50                     lx[j]-=minn;
    51                     
    52             for(int j=1;j<=n;j++)
    53                 if(sy[j])
    54                     ly[j]+=minn;
    55                 else 
    56                     slack[j]-=minn;
    57         }    
    58     }    
    59     int ret=0;
    60     for(int i=1;i<=n;i++)
    61         ret+=w[match[i]][i];
    62     return ret;    
    63 }
    64 int main(){
    65     int T;
    66     scanf("%d",&T);
    67     while(T--){
    68         scanf("%d%d",&n,&m);
    69         memset(w,0x80,sizeof(w));
    70         memset(match,0,sizeof(match));
    71         for(int i=1,a,b,c;i<=m;i++){
    72             scanf("%d%d%d",&a,&b,&c);
    73             w[a][b]=max(w[a][b],-c);
    74         }
    75         printf("%d
    ",-KM());
    76     }
    77     return 0;
    78 }
    尽最大的努力,做最好的自己!
  • 相关阅读:
    使用pca/lda降维
    交叉验证
    各模型选择及工作流程
    岭回归
    线性回归
    K-临近算法(KNN)
    django中的中间件
    django中form组件
    javascript中的词法分析
    Django之Model操作
  • 原文地址:https://www.cnblogs.com/TenderRun/p/5330061.html
Copyright © 2020-2023  润新知