• 深度学习之Python 脚本训练keras mnist 数字识别模型


    本脚本是训练keras 的mnist 数字识别程序 ,以前发过了 ,今天把 预测实现了,


    # Larger CNN for the MNIST Dataset
    # 2.Negative dimension size caused by subtracting 5 from 1 for 'conv2d_4/convolution' (op: 'Conv2D') with input shapes
    # 3.UserWarning: Update your `Conv2D` call to the Keras 2 API: http://blog.csdn.net/johinieli/article/details/69222956
    # 4.Error when checking input: expected conv2d_1_input to have shape (None, 28, 28, 1) but got array with shape (60000, 1, 28, 28)
    
    # talk to wumi,you good .
    
    # python 3.5.4
    # keras.__version__  : 2.0.6
    # thensorflow 1.2.1
    # theano 0.10.0beta1
    
    # good blog
    # http://blog.csdn.net/shizhengxin123/article/details/72383728
    # http://www.360doc.com/content/17/0415/12/1489589_645772879.shtml
    
    # recommand another framework  http://tflearn.org/examples/
    
    import numpy
    import keras
    from keras.datasets import mnist
    from keras.models import Sequential
    from keras.layers import Dense
    from keras.layers import Dropout
    from keras.layers import Flatten
    from keras.layers.convolutional import Conv2D
    from keras.layers.convolutional import MaxPooling2D
    from keras.utils import np_utils
    import matplotlib.pyplot as plt
    from keras.constraints import maxnorm
    from keras.optimizers import SGD
    from keras.preprocessing import image
    import skimage.io
    
    
    
    # fix random seed for reproducibility
    seed = 7
    numpy.random.seed(seed)
    # load data
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    
    plt.subplot(221)
    
    plt.imshow(X_train[0], cmap=plt.get_cmap('gray'))
    
    plt.show()
    # reshape to be [samples][pixels][width][height]
    X_train = X_train.reshape(X_train.shape[0], 28, 28, 1).astype('float32')
    X_test = X_test.reshape(X_test.shape[0], 28, 28, 1).astype('float32')
    # X_train = X_train.reshape(1, 28, 28, 1).astype('float32') ValueError: cannot reshape array of size 47040000 into shape (1,28,28,1)
    #X_test = X_test.reshape(1, 28, 28, 1).astype('float32')  ValueError: cannot reshape array of size 47040000 into shape (1,28,28,1)
    # X_train = X_train.reshape(X_train.shape[0], 1, 28, 28).astype('float32')
    # X_test = X_test.reshape(X_test.shape[0], 1, 28, 28).astype('float32')    <---4
    # normalize inputs from 0-255 to 0-1
    X_train = X_train / 255
    X_test = X_test / 255
    # one hot encode outputs
    y_train = np_utils.to_categorical(y_train)
    y_test = np_utils.to_categorical(y_test)
    num_classes = y_test.shape[1]
    
    
    ###raw
    # define the larger model
    def larger_model():
        # create model
        model = Sequential()
        model.add(Conv2D(30, (5, 5), padding='valid', input_shape=(28, 28, 1), activation='relu'))
        # model.add(Conv2D(30, (5, 5), padding='valid', input_shape=(28, 28,1), activation='relu'))   <----3,2
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.4))
        model.add(Conv2D(15, (3, 3), activation='relu'))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.4))
        model.add(Flatten())
        model.add(Dense(128, activation='relu'))
        model.add(Dropout(0.4))
        model.add(Dense(50, activation='relu'))
        model.add(Dropout(0.4))
        model.add(Dense(num_classes, activation='softmax'))
        # Compile model
        # optimizer  优化器
        # loss 损失函数
        model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
        return model
    
    
    # build the model
    model = larger_model()
    # Fit the model
    # fit函数返回一个History的对象,其History.history属性记录了损失函数和其他指标的数值随epoch变化的情况,如果有验证集的话,也包含了验证集的这些指标变化情况
    model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=200,
              verbose=2)  # epochs 200 too bigger
    # model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=200, batch_size=200, verbose=2)
    # Final evaluation of the model
    scores = model.evaluate(X_test, y_test, verbose=0)
    print("Large CNN Error: %.2f%%" % (100 - scores[1] * 100))
    
    # save the model
    model.save('D:\works\jetBrians\PycharmProjects\tryPicture\my_model.h5')  # creates a HDF5 file 'my_model.h5'
    del model
    
    # reload the modle
    # returns a compiled model
    # identical to the previous one
    # modelTrained = Sequential()
    # model = modelTrained.load_model('D:\works\jetBrians\PycharmProjects\tryPicture\my_model.h5')
    
    # https://gist.github.com/ageitgey/a40dded08e82e59724c70da23786bbf0
    
    # write a number in a picture
    # predict numbers
    
    #image_path = './lena.jpg'
    # method 1
    # load pic
    #img = image.load_img(image_path, target_size=(28, 28))
    # handle pic
    #x = image.img_to_array(img)
    #x = numpy.expand_dims(x, axis=0)
    #x = preprocess_input(x)
    
    # method2
    #img2 = skimage.io.imread(image_path, as_grey=True)
    #skimage.io.imshow(img2)
    #plt.show()
    #img2 = numpy.reshape(img2, (1, 28, 28, 1)).astype('float32')
    # 对数字进行预测
    #https://baijiahao.baidu.com/s?id=1574962680356106&wfr=spider&for=pc
    #predict = model.predict(img2, verbose=0)
    #result = model.prediect_classes(img2, verbose=0)
    #print(predict[0])
    #print(result[0])
    
    #some warning tips  The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
    #have no idea what's the meaning
    
    
    原来数据样式 
    
    
    
    
    =================训练log
    
    D:applicationsAnaconda3python.exe D:/works/jetBrians/PycharmProjects/tryPicture/trainModel/TrainModel.py
    Using TensorFlow backend.
    Train on 60000 samples, validate on 10000 samples
    Epoch 1/10
    62s - loss: 0.8830 - acc: 0.7027 - val_loss: 0.1566 - val_acc: 0.9545
    Epoch 2/10
    56s - loss: 0.3130 - acc: 0.9078 - val_loss: 0.0955 - val_acc: 0.9712
    Epoch 3/10
    61s - loss: 0.2342 - acc: 0.9340 - val_loss: 0.0737 - val_acc: 0.9763
    Epoch 4/10
    58s - loss: 0.1924 - acc: 0.9458 - val_loss: 0.0643 - val_acc: 0.9802
    Epoch 5/10
    60s - loss: 0.1678 - acc: 0.9534 - val_loss: 0.0541 - val_acc: 0.9848
    Epoch 6/10
    53s - loss: 0.1541 - acc: 0.9578 - val_loss: 0.0468 - val_acc: 0.9849
    Epoch 7/10
    53s - loss: 0.1396 - acc: 0.9617 - val_loss: 0.0464 - val_acc: 0.9852
    Epoch 8/10
    55s - loss: 0.1303 - acc: 0.9647 - val_loss: 0.0422 - val_acc: 0.9871
    Epoch 9/10
    52s - loss: 0.1276 - acc: 0.9656 - val_loss: 0.0398 - val_acc: 0.9871
    Epoch 10/10
    53s - loss: 0.1156 - acc: 0.9680 - val_loss: 0.0370 - val_acc: 0.9876
    Large CNN Error: 1.24%
    
    Process finished with exit code 0
    
    
    
     

  • 相关阅读:
    java解析纯真IP数据库,查询IP,导出所有数据,插入oracle
    安装Oracle 9i,提示数据库提取错误
    eclipse(myeclipse)tomcat插件,加载不了工程,空启动,如何解决
    TCP/UDP协议,在QQ中的应用
    QueryExtender控件之RangeExpression
    ASP.NET缓存依赖SQL Server 2005与SQL Server 2008缓存依赖
    QueryExtender控件之PropertyExpression
    QueryExtender控件之CustomExpression
    荣获2009年“微软最有影响力开发者”
    fckeditor编辑器上传文件出现invalid Request问题解决
  • 原文地址:https://www.cnblogs.com/TendToBigData/p/10501188.html
Copyright © 2020-2023  润新知