• [傅里叶变换及其应用学习笔记] 十. 卷积与中心极限定理


    这份是本人的学习笔记,课程为网易公开课上的斯坦福大学公开课:傅里叶变换及其应用。

    中心极限定理(Central Limit Theorem)

    中心极限定理,简称CLT。大多数概率事件,当有足够多的取样时,都服从高斯分布。(Most probabilities – some kind of average – are calculated or approximated as if they are determined by a Gaussian.)

    标准正态(高斯)分布

    在傅里叶变换中,我们用$f = e^{-pi t^2}$作为标l准高斯函数,因为它的正逆傅里叶变换都是$e^{-pi t^2}$。对中心极限定理来说,标准正态分布的密度函数(probability density function)是

    $p(x) = frac{1}{sqrt{2pi}} e^{frac{-x^2}{2}}$

    采用这个式子作为标准正态分布的原因是它的均值(期望值)是0,它的标准差与方差为1。

    对应地,概率函数为

    $Prob(a leqslant X leqslant b) = displaystyle{int_a^b p(x) dx = frac{1}{sqrt{2pi}}int_a^b e^{-frac{x^2}{2}}dx }$

    image

    设有随机变量$X$,$X$为统称,$X$的实际测量值为$x$,$x$的概率密度函数记为$p(x)$。

    对于任意$x$,都有

    $p(x) geqslant 0$

    $x$在$a$到$b$之间的概率为

    $Prob(a leqslant x leqslant b) = displaystyle{int_a^b p(x)dx }$

    总概率为1

    $Prob(-infty leqslant x leqslant infty) = displaystyle{int_{-infty}^{infty}p(x)dx = 1 }$

    分布与卷积的关系

    假设有两个独立的随机变量:$x_1$,$x_2$,其密度函数分别为$p_1(x_1)$,$p_2(x_2)$。那么$x_1+x_2$的密度函数为$p_{12}(x_{12})$,它与$p_1(x_1)$、$p_2(x_2)$有什么关系呢?

    求解过程如下:

    设有任意变量$t$,$x_1+x_2 leqslant t$的概率记为$Prob(x_1+x_2 leqslant t)$。我们画以下坐标图像辅助分析

    image

    $Prob(x_1+x_2 leqslant t)$意为坐标落在阴影部分的概率

    $Prob(x_x+x_2 leqslant t) = displaystyle{iint_{x_1 + x_2 leqslant t} p_1(x_1)p_2(x_2)dx_1dx_2 }$

    进行变量代换,令$u=x_1$,$v=x_1+x_2$,则

    $left{egin{matrix}
    x_1 &= &u\
    x_2 &= &v - u\
    t &= &v
    end{matrix} ight.$

    进行变量代换后,对应的新平面($u$,$v$平面)如下

    image

    计算如下

    $egin{align*}
    Prob(x_1+x_2 leqslant t)
    &= Prob(v leqslant t) \
    &= int_{-infty}^{infty}int_{-infty}^{t}p_1(u)p_2(v-u)dudv \
    &= int_{-infty}^{t}left( int_{-infty}^{infty}p_1(u)p_2(v-u)du ight)dv \
    &= int_{-infty}^{t}(p_1 * p_2)dv
    end{align*}$

    因此$p_1 * p_2$可当做$x_1+x_2$的密度函数。

    结论:独立随机变量的和的密度函数为他们各自密度函数的卷积

    $p(x_1+x_2+…+x_n) = p_1*p_2*…*p_n$

    中心极限定理推导过程

    设有$n$个随机独立变量$x_1,x_2,…,x_n$,他们满足下列条件

    1. 有相同的密度函数:$p_1=p_2=…=p_n=p(x)$

    2. 均值(期望值)为:$mu = displaystyle{int_{-infty}^{infty}xp(x)dx=0 }$

    3. 标准差为:$sigma = displaystyle{sqrt{int_{-infty}^{infty}x^2p(x)dx } =1}$

    4. 概率的一般性质,总概率为:$displaystyle{int_{-infty}^{infty}p(x)dx = 1 }$

    设$S_n$为这$n$个随机变量的和

    $S_n = x_1+x_2+…+x_n$

    $S_n$的密度函数为

    $p^{*n} = underbrace{p*p*...*p}_n$

    $S_n$的均值为$0$,标准差为$sqrt{n}$,因此我们需要对它进行标准化(Normalization)。

    标准化包括两个步骤:

    1. 横轴缩放。标准化后密度函数为$f(z)$,$z = frac{x-mu}{sigma}$,即$x=sigma z+mu = sqrt{n}z$

    2. 纵轴缩放。$f(z) = sigma f(x) = sqrt{n} p^{*n}(x)$

    两个步骤合在一起,得到

    $f(z) = sqrt{n} p^{*n}(sqrt{n}z)$

    记标准化后的密度函数为

    $p_{normal}(x) = sqrt{n} p^{*n}(sqrt{n}x)$

    为了把卷积计算简化,需要引入傅里叶变换把卷积运算转换为乘法运算

    $egin{align*}
    mathcal{F}left(sqrt{n}(p^{*n})(sqrt{n}x) ight)
    &=sqrt{n}cdotfrac{1}{sqrt{n}}left(mathcal{F}(p^{*n}) ight)(frac{s}{sqrt{n}})quad Fourier Scaling Theorem\
    &=(mathcal{F}(p^{*n}))(frac{s}{sqrt{n}})\
    &=(mathcal{F} p)^n(frac{s}{sqrt{n}})quad Fourier Convolution Theorem\
    &=left(int_{-infty}^{infty}e^{-2pi i(frac{s}{sqrt{n}})x} p(x)dx ight)^n\
    &=left(int_{-infty}^{infty}left(1-frac{2pi isx}{sqrt{n}}+frac{1}{2}left(frac{2pi isx}{sqrt{n}} ight)^2+... ight)p(x)dx ight)^nquad Taylor Series\
    &=left(int_{-infty}^{infty}p(x)dx-frac{2pi is}{sqrt{n}}int_{-infty}^{infty}xp(x)dx-frac{2pi^2s^2}{n}int_{-infty}^{infty}x^2p(x)dx+... ight)^n\
    &=left(1-0-frac{2pi^2s^2}{n}+... ight)^n\
    &approxleft(1-frac{2pi^2s^2}{n} ight)^n
    end{align*}$

    当$n o infty$时,$lim_{n o infty}left(1-frac{2pi^2s^2}{n} ight)^n approx e^{-2pi^2s^2}$,即

    $mathcal{F}left(sqrt{n}(p^{*n})(sqrt{n}x) ight) = e^{-2pi^2s^2}$

    用傅里叶逆变换求出

    $p_{normal} = mathcal{F}^{-1}(e^{-2pi^2s^2}) = frac{1}{sqrt{2pi}}e^{-frac{x^2}{2}}$

    因此得出结论:

    当$n o infty$,$p_{normal}(x) = frac{1}{sqrt{2pi}}e^{-frac{x^2}{2}}$。

    其中n可以理解为某个独立随机变量连续测量的次数,当测量次数足够多时,其概率的密度函数会符合正态分布。这也就是我们所称的中心极限定理。

    二项分布是正态分布的一个特殊情况,正态分布的随机变量是连续的,而二项分布的变量取值只有两项,是离散的。二项分布在我们的日常生活中比较常见。用游戏抽卡来举个例子,取值只有出货或者没出货两个。设n是某一个人抽卡的次数,如果$n o infty$,那么这个人抽卡出货的情况,呈二项分布。简而言之,假设有非常多的人在玩某个抽卡游戏,并且每个人的抽卡次数都非常多,那么大部分人抽卡的出货量会分布在期望值的近两侧,即亚洲人,少部分人是欧洲人或者非洲人,这种出货量的分布状况呈二项分布。

  • 相关阅读:
    ueditor1.4.3.all.js报错
    ueditor中FileUtils.getTempDirectory()找不到
    java后台验证码的生成
    applicationContext.xml重要配置
    Java代码实现文件上传(转载)
    jquery动态实现填充下拉框
    POI写入word docx 07 的两种方法
    POI读word docx 07 文件的两种方法
    POI转换word doc文件为(html,xml,txt)
    Linux中zip压缩和unzip解压缩命令详解
  • 原文地址:https://www.cnblogs.com/TaigaCon/p/5014957.html
Copyright © 2020-2023  润新知