• HDU


    给你下面程序:

    #pragma comment(linker, "/STACK:1024000000,1024000000") 
    #include <cstdio> 
    #include<iostream> 
    #include <cstring> 
    #include <cmath> 
    #include <algorithm> 
    #include<vector> 
    
    const int MAX=100000*2; 
    const int INF=1e9; 
    
    int main() 
    { 
      int n,m,ans,i; 
      while(scanf("%d%d",&n,&m)!=EOF) 
      { 
        ans=0; 
        for(i=1;i<=n;i++) 
        { 
          if(i&1)ans=(ans*2+1)%m; 
          else ans=ans*2%m; 
        } 
        printf("%d
    ",ans); 
      } 
      return 0; 
    }

    【数据范围】
    1n,m1000000000


    【分析】
    通过打表得知fi=fi2+2i1,因为n太大肯定不能暴力做,开始想着通过这个公式等比数列求和就可以做,但是后面发现因为要Mod m,而m的值不是定值,求逆元就不一定有。所以构造矩阵来做:

    [fnfn12i]=[011100002]×[fn1fn22i1]
    由此可转移如下:
    [fnfn12i]=[011100002]n2×[f2f122](n3)

    fn=n(n2)


    【代码】

    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<cstdlib>
    #include<vector>
    #include<algorithm>
    using namespace std;
    typedef long long LL;
    typedef vector<LL> vec;
    typedef vector<vec> mat;
    void Init(mat &A) {//构造矩阵
        A[0][0] = 0; A[0][1] = 1LL, A[0][2] = 1LL;
        A[1][0] = 1LL; A[1][1] = 0, A[1][2] = 0;
        A[2][0] = 0; A[2][1] = 0, A[2][2] = 2LL;
    }
    mat mul(mat &A, mat &B, LL m) {//矩阵乘法
        mat C(A.size(), vec(B[0].size()));
        for(int i = 0; i < A.size(); i++)
            for(int k = 0; k < B.size(); k++)
                for(int j = 0; j < B[0].size(); j++)
                    C[i][j] = (C[i][j] + A[i][k] * B[k][j] % m) % m;
        return C;
    }
    mat pow(mat &A, LL n, LL m) {//矩阵快速幂
        mat B(A.size(), vec(A.size()));
        for(int i = 0; i < A.size(); i++)B[i][i] = 1LL;
        while(n > 0) {
            if(n & 1)B = mul(B, A, m);
            n >>= 1;
            A = mul(A, A, m);
        }
        return B;
    }
    void solve(mat A, LL n, LL m) {
        LL res = 0;
        if(n <= 2LL)res = n % m;
        else {
            A = pow(A, n - 2LL, m);
            res = (A[0][0] * 2LL + A[0][1] + A[0][2] * 4LL % m) % m;
        }
        printf("%lld
    ", res);
    }
    int main() {
        LL n, m;
        while(~scanf("%lld%lld", &n, &m)) {
            mat A(3, vec(3));
            Init(A);
            solve(A, n, m);
        }
        return 0;
    }
  • 相关阅读:
    寻找我的黑客偶像
    20201215 《信息安全专业导论》第三周学习总结
    罗马数字
    base编码
    20201215 王馨瑶 第2周学习总结
    罗马数字转阿拉伯数字
    2020-2021-1 20201226 《信息安全专业导论》第三周学习总结
    IEEE754 浮点数
    Base64
    2020-2021-1 20201226 《信息安全专业导论》第2周学习总结
  • 原文地址:https://www.cnblogs.com/TRDD/p/9813519.html
Copyright © 2020-2023  润新知