• TensorBoard 实践 1


    从新查看图的时候,删除旧的logs/下面的文件

    tf.scalar_summary('loss',self.loss)

    AttributeError: 'module' object has no attribute 'scalar_summary'

    
    

    解决:

    
    

    tf.scalar_summary('images', images)改为:tf.summary.scalar('images', images)

    tf.image_summary('images', images)改为:tf.summary.image('images', images)

    类似的有:

    
    

    tf.train.SummaryWriter改为:tf.summary.FileWriter()

    tf.merge_all_summaries()改为:summary_op = tf.summaries.merge_all()

    tf.histogram_summary(var.op.name, var)改为:  tf.summaries.histogram()

    concated = tf.concat(1, [indices, sparse_labels])改为:concated = tf.concat([indices, sparse_labels], 1)



    通过对命名空间管理,改进代码,使得可视化效果图更加清晰。

    #
    coding=utf8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import mnist_inference BATCH_SIZE = 100 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.99 REGULARIZATION_RATE = 0.0001 TRAINING_STEPS = 3000 MOVING_AVERAGE_DECAY = 0.99 def train(mnist): # 输入数据的命名空间。 with tf.name_scope('input'): x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input') y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE) y = mnist_inference.inference(x, regularizer) global_step = tf.Variable(0, trainable=False) # 处理滑动平均的命名空间。 with tf.name_scope("moving_average"): variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) # 计算损失函数的命名空间。 with tf.name_scope("loss_function"): cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1)) cross_entropy_mean = tf.reduce_mean(cross_entropy) loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses')) # 定义学习率、优化方法及每一轮执行训练的操作的命名空间。 with tf.name_scope("train_step"): learning_rate = tf.train.exponential_decay( LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY, staircase=True) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) with tf.control_dependencies([train_step, variables_averages_op]): train_op = tf.no_op(name='train') writer = tf.summary.FileWriter("./log/modified_mnist_train.log", tf.get_default_graph()) # 训练模型。 with tf.Session() as sess: tf.global_variables_initializer().run() for i in range(TRAINING_STEPS): xs, ys = mnist.train.next_batch(BATCH_SIZE) if i % 1000 == 0: # 配置运行时需要记录的信息。 run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) # 运行时记录运行信息的proto。 run_metadata = tf.RunMetadata() _, loss_value, step = sess.run( [train_op, loss, global_step], feed_dict={x: xs, y_: ys}, options=run_options, run_metadata=run_metadata) writer.add_run_metadata(run_metadata=run_metadata, tag=("tag%d" % i), global_step=i) print("After %d training step(s), loss on training batch is %g." % (step, loss_value)) else: _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys}) writer.close() def main(argv=None): mnist = input_data.read_data_sets("MNIST_data", one_hot=True) train(mnist) if __name__ == '__main__': main()

    可视化效果图:

  • 相关阅读:
    Failed at the node-sass@4.13.1 postinstall script. npm ERR! This is probably not a problem with npm. There is likely additional logging output above.
    页面跳转
    多行文字溢出显示省略号
    iview-select选择器组件的使用&设置默认选中的值
    iview中表单验证(遇到的问题)
    iview DatePicker type 为dateTime 时无法做表单验证!
    报错:[Vue warn]: Error in callback for watcher "value": "Value should be trueValue or falseValue."
    Jquery 数字滚动兼容小数
    validate表单验证-单独验证
    2020软件工程作业03
  • 原文地址:https://www.cnblogs.com/TMatrix52/p/7642480.html
Copyright © 2020-2023  润新知