• CF600E Lomsat gelral——线段树合并/dsu on tree


    题目描述

      一棵树有$n$个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和。

      这个题意是真的窒息。。。具体意思是说,每个节点有一个颜色,你要找的是每个子树中颜色的众数(可能有多个),比如子树中有$3个2,3个1,3个5,那么2,1,5都是众数,答案为2+1+5=8$。

    思路

    做法一:

      线段树合并。权值线段树覆盖颜色$1->100000,用sum$表示颜色最多出现的次数,$ans$表示答案。分$3种情况pushup$即可。

    1. 左右子树$sum$相等
    2. 左边$>$右边
    3. 左边$<$右边

      $dfs的时候merge$一下即可。

    code

    #include<iostream>
    #include<algorithm>
    #include<cstring>
    #include<cstdio>
    #include<vector> 
    #define smid (l+r>>1)
    #define I inline 
    using namespace std;
    typedef long long LL;
    const int N=100010;
    LL col[N];
    LL maxcol;
    int n;
    int ls[N*40],rs[N*40],cnt,rt[N];
    LL sum[N*40],ans[N*40];
    vector<int>g[N];
    LL out[N];
    
    I void pushup(int now)
    {
        if(sum[ls[now]]==sum[rs[now]])
        {
            sum[now]=sum[ls[now]];
            ans[now]=ans[ls[now]]+ans[rs[now]];
        }
        else if(sum[ls[now]]<sum[rs[now]])
        {
            sum[now]=sum[rs[now]];
            ans[now]=ans[rs[now]];
        }
        else
        {
            sum[now]=sum[ls[now]];
            ans[now]=ans[ls[now]];
        }
    }
    
    I void modify(int &now,int l,int r,int pos)
    {
        if(!now)now=++cnt;
        if(l==r)
        {
            sum[now]++;ans[now]=l;
            return;
        }
        if(pos<=smid)modify(ls[now],l,smid,pos);
        else modify(rs[now],smid+1,r,pos);
        pushup(now);
    }
    
    I int merge(int x,int y,int l,int r)
    {
        if(!x||!y)return x+y;
        if(l==r)
        {
            sum[x]+=sum[y];ans[x]=l;
            return x;
        }
        ls[x]=merge(ls[x],ls[y],l,smid);
        rs[x]=merge(rs[x],rs[y],smid+1,r);
        pushup(x);
        return x;
    }
    
    I void dfs(int u,int fa)
    {
        for(int i=0;i<g[u].size();i++)
        {
            int v=g[u][i];
            if(v==fa)continue;
            dfs(v,u);
            merge(rt[u],rt[v],1,100000);
        }
        modify(rt[u],1,100000,col[u]);
        out[u]=ans[rt[u]];
    }
    
    int main()
    {
        ios::sync_with_stdio(false);
        cin>>n;
        for(int i=1;i<=n;i++)
        {
            cin>>col[i];
            rt[i]=i;cnt++;
        }
        for(int i=1;i<n;i++)
        {
            int x,y;cin>>x>>y;
            g[x].push_back(y);g[y].push_back(x);
        }
        dfs(1,0);
        for(int i=1;i<=n;i++)
        {
            cout<<out[i]<<" ";
        }
    }

    洛谷上交不了,必须到$CF$上交,但是$CF$上不给用scanf("%lld"),就加了$cin$加速。

    做法二:

      树上启发式合并。这里当做板子题来讲。$dsu on tree$是个啥?其实就是优化的暴力,对于一棵树,我们定义节点$u的重儿子son[u]为其size$最大的儿子,其余为轻儿子。这个算法主要用于:

    1. 只有对子树的询问
    2. 没有修改操作

      回到这个题目:首先我们考虑暴力$dfs$:遍历每个节点的子树,统计颜色出现的个数,得出当前的的答案,再清空当前点的影响,继续$dfs$,这个算法是$O(n^2)$的,于是我们使用一些重链剖分的性质,搞一个树上启发式合并。具体流程如下:

    1. $dfs$遍历每个节点
    2. 先递归所有轻儿子,跑到底层,不保留这一次$dfs$的答案
    3. 递归重儿子,保留这一次$dfs$的答案
    4. 重儿子所在子树被处理完了,而且又保留了答案,只剩下当前节点的轻儿子了
    5. 暴力统计所有轻儿子所在子树的答案
    6. 通过上面两步得出当前点的答案
    7. 如果是轻儿子就清空当前点对答案的影响

    主体框架

    code(比较板子)

    #include<iostream>
    #include<algorithm>
    #include<vector>
    #include<cstring>
    #include<cstdio>
    #define I inline
    using namespace std;
    const int N=100010;
    typedef long long LL;
    int sz[N],son[N],n,col[N],Son;
    vector<int>g[N];
    LL cnt[N],mx,ans[N],sum;
    
    I int read()
    {
        int x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    
    I void gets(int u,int fa)
    {
        sz[u]=1;
        for(int i=0;i<g[u].size();i++)
        {
            int v=g[u][i];
            if(v==fa)continue;
            gets(v,u);
            sz[u]+=sz[v];
            if(sz[v]>sz[son[u]])son[u]=v;
        }
    }
    
    I void add(int u,int fa,int val)
    {
        cnt[col[u]]+=val;
        if(mx==cnt[col[u]])sum+=LL(col[u]);
        if(mx<cnt[col[u]])sum=col[u],mx=cnt[col[u]];
        for(int i=0;i<g[u].size();i++)
        {
            int v=g[u][i];
            if(v==fa||v==Son)continue;
            add(v,u,val);
        }
    }
    
    I void dfs(int u,int fa,bool opt)//opt为是否保留答案 
    {
        for(int i=0;i<g[u].size();i++)
        {
            int v=g[u][i];
            if(v==fa||v==son[u])continue;
            dfs(v,u,0);//递归处理所有轻儿子 
        }
        if(son[u])dfs(son[u],u,1),Son=son[u];
        //处理所有重儿子并得到重儿子所在子树答案 
        add(u,fa,1);//得到轻儿子所在子树的答案
        Son=0;//注意这里,如果要消除影响,重儿子的影响也要消除 
        ans[u]=sum;//得出答案 
        if(!opt)add(u,fa,-1),sum=0,mx=0;//消除影响,看情况要不要加add函数 
    }
    
    int main()
    {
        n=read();
        for(int i=1;i<=n;i++)col[i]=read();
        for(int i=1;i<n;i++)
        {
            int x=read(),y=read();
            g[x].push_back(y);g[y].push_back(x);
        }
        gets(1,0);
        dfs(1,0,1);
        for(int i=1;i<=n;i++)printf("%lld ",ans[i]);
    }
  • 相关阅读:
    spring框架的jar包下载
    十四、注解(阶段三)
    十三、反射机制(阶段三)
    十二、多线程(阶段三)
    十一、I/O流(阶段三)
    十、集合类(阶段三)
    九、异常处理(阶段三)
    八、常用类(阶段三)
    IDEA安装及基本配置
    在eclipse中,用maven创建一个web项目工程
  • 原文地址:https://www.cnblogs.com/THRANDUil/p/11582064.html
Copyright © 2020-2023  润新知