• 【算法•日更•第二十五期】万能算法(一):搜索+?


    ▎前言

      看到这个标题,你是不是倍感疑惑,为什么会是搜索+,而不是搜索,会不会是小编打错的,其实本篇博客将会让你看到搜索的各种玩法。

    ▎前置技能

    『基础知识』

      搜索:dfs和bfs(戳这里迅速上手)

    『dfs和bfs的异同点』

      相同点:dfs和bfs都用于搜索,都是来寻找点的。

      不同点:dfs以深度为优先,不撞南墙不回头,一鼓作气搜遍一条路,所以比较不靠谱,但是代码量少,也好写,大部分人都喜欢用。而bfs则是以广度为优先,逐层遍历,相比dfs来说更加理性,但是当状态不好存储时,就只能用dfs了。

    ▎dfs+bfs:传说中的bdfs

    『迭代加深搜索』

      其实没有bdfs,人家的真名叫迭代加深搜索。

      如果你搜一下百度,那么度娘会告诉你:在计算机科学中,迭代深化搜索(iterative deepening search)或者更确切地说迭代深化深度优先搜索 (iterative deepening depth-first search (IDS or IDDFS)) 是一个状态空间(状态图)搜索策略。在这个搜索策略中,一个具有深度限制的深度优先搜索算法会不断重复地运行,并且同时放宽对于搜索深度的限制,直到找到目标状态。IDDFS 与广度优先算法是等价的,但对内存的使用会少很多;在每一步迭代中,它会按深度优先算法中的顺序,遍历搜索树中的节点,但第一次访问节点的累积顺序实际上是广度优先的。(copy自百度)

      说了半天也什么也不懂,那么就来看一看引例吧。

    『引例』

    例 – 埃及分数

      这道题先来想bfs,如何存储状态,这显然是不好存储的。

      用dfs呢?又表示很无力,因为不知道由几个分数组成,也不知道每个分母上限是是多大,dfs可能会一直搜下去,一条路走到黑。

      怎么办呢?两种搜索都遇到了瓶颈,那么我们不妨结合一下两种搜索方式。

    『算法核心』

      我们以dfs为主体,而dfs的缺点是越走越远,那么我们可以注入bfs的特性:逐层展开,我们不妨设置一个变量,用于存储层数,限制好dfs到达这一层就不允许继续搜索了。

      这样不仅思路简单,还结合了两种搜索的方式。

    『算法模板』

      

      (copy自cdcq的ppt)

    ▎搜索+剪枝

      如果将搜索的各状态间依据转移顺序连接好边,那么就会形成搜索树,而剪枝正是将无用的枝条剪去以增加效率。

      剪枝优化(戳这里迅速上手)

    ▎搜索+状态压缩

    『状态压缩』

      有时可能一张图不能用二维数组存下,原因是数据规模太大。

      也可能是想优化一下算法的时间复杂度。

      我们就可以用状态压缩,将图转化成二进制,一维数组即可存下整张图,或者使用lowbit也是优化算法的好办法。

    『引例』

      还是N皇后题目及题解(戳这里学习)

    『状态压缩应用』

      状态压缩优化动态规划例题精讲(戳这里学习)

    ▎搜索+搜索

      没错,这就是双向搜索。

       双向BFS,就是在起点和终点都很清楚的情况下,把起点和终点同时入队,或者进两个队,共同进行bfs,当二者第一次相遇时为最优解。

      目的是为了解决搜索访问状态太多的问题,时间复杂度比单向的搜索优化了不少。

  • 相关阅读:
    2015hust暑假集训 0715 F
    hust2015暑假集训 0715 c a coprime
    0714c
    hdu_1019Least Common Multiple(最小公倍数)
    hdu_1576A/B(扩展欧几里得求逆元)
    hdu_5104 Primes Problem()
    hdu_3483A Very Simple Problem(C(m,n)+快速幂矩阵)
    hdu_2604Queuing(快速幂矩阵)
    hdu_3003Pupu(快速幂)
    神奇的读入读出
  • 原文地址:https://www.cnblogs.com/TFLS-gzr/p/11248509.html
Copyright © 2020-2023  润新知