多媒体、图形学、网络通信等计算机应用技术领域,尤其是计算机视觉、自然语言处理。
交叉学科的技术支撑,例如生物信息学,它的研究涉及从“生命现象”到“规律发现”的整个过程,包括数据处理整个流程,其中“数据分析”就是机器学习的舞台。
数据科学的核心即通过分析数据获取价值。机器学习是大数据时代必不可少的核心技术,因为收集存储管理大数据的目的,就是利用大数据,没有机器学习分析数据,利用则无从谈起。
数据挖掘与机器学习:数据挖掘是从海量数据中发掘知识的技术,在20世纪90年代形成,数据库、机器学习、统计学对其影响最大;数据库技术提供数据管理技术,机器学习和统计学习则为数据挖掘提供数据分析技术,统计学界成果通常要经由机器学习研究形成有效的学习算法,然而用于数据挖掘,因此,统计学主要通过机器学习对数据挖掘发挥影响,机器学习和数据库技术则是数据挖掘的两大支撑。
天气预报、能源勘探、环境监测领域,通过机器学习相关数据,提高预报和检测准确性;商业,分析销售、客户数据,优化库存、降低成本、推荐系统等。
信息搜索领域,如百度、谷歌,用户查询是输入,搜索结果是输出,机器学习则在输入、输出间建立联系。
自动驾驶
机器学习已成为智能数据分析技术的创新源泉,另外,促进理解“人类如何学习”这个人类自我的本识认知。即机器学习不仅在信息科学占有重要地位,还具有一定的自然科学探索色彩。