模拟
1 T = int(input())
2 while T:
3 T -= 1
4 s = raw_input()
5 n = len(s)
6 res, pre = 0, 0
7 for i in xrange(1, n):
8 if (s[i] == s[pre]):
9 res += 1
10 else:
11 pre = i
12 print res
模拟
1 n, k = map(int, raw_input().split())
2 s = raw_input()
3
4 res = []
5 ans = 0
6 for i in xrange(n):
7 if i >= k:
8 ans ^= int(res[i-k])
9 tmp = ans ^ int(s[i])
10 res.append(tmp)
11 ans ^= tmp
12 print ''.join(map(str, res))
题目大意:给出k种高度不同的积木,每种积木可以使用无数次,问使用这些积木拼成高度为N的塔的方法数对1e9 + 7的模是多少。
另F(x)为拼接成高度为x的方法数,则F(x) = sigma(F(i)) (1 <= i <= k && high[i] <= x)
可先处理出1~15的F函数的值,当N>15时,使用矩阵加速即可。
1 #include <cmath>
2 #include <cstdio>
3 #include <vector>
4 #include <cstring>
5 #include <iostream>
6 #include <algorithm>
7 using namespace std;
8
9 typedef long long LL;
10 const int MOD = 1e9 + 7;
11 #define rep(i, n) for (int i = (1); i <= (n); i++)
12 LL N, K, A[20], f[20];
13 struct Matrix {
14 LL a[20][20];
15 Matrix() {memset(a, 0, sizeof(a));}
16
17 Matrix operator * (const Matrix &x) const {
18 Matrix c;
19 rep (i, 15) rep (k, 15) rep (j, 15) c.a[i][j] = (c.a[i][j] + x.a[k][j] * a[i][k]) % MOD;
20 return c;
21 }
22 };
23
24 Matrix pow_mod(Matrix a, LL b) {
25 if (b < 0) return a;
26 Matrix res;
27 rep (i, K) res.a[i][i] = 1;
28 while (b > 0) {
29 if (b & 1) res = res * a;
30 a = a * a;
31 b >>= 1;
32 }
33 return res;
34 }
35
36
37 int main() {
38 ios::sync_with_stdio(false);
39 cin >> N >> K;
40 rep (i, K) cin >> A[i];
41
42 sort(A + 1, A + K + 1);
43 f[0] = 1;
44 rep (i, 15) rep (j, K) if (i >= A[j]) f[i] = (f[i] + f[i - A[j]]) % MOD;
45 rep (i, 15) cerr << f[i] << endl;
46 if (N <= 15) {
47 cout << f[N] * 2 % MOD << endl;
48 return 0;
49 }
50
51 Matrix a; rep (i, 15) a.a[i][i-1] = 1;
52 a.a[1][1] = 0; rep (i, K) a.a[1][A[i]] = 1;
53 Matrix res = pow_mod(a, N - 15);
54 LL ans = 0;
55 rep (i, 15) ans = (ans + res.a[1][i] * f[16 - i]) % MOD;
56 ans = (ans * 2) % MOD;
57 cout << ans << endl;
58 return 0;
59 }
题目大意:给出N个点,每个点有两个值V和P。要求从1开始走到N,在每个点选择有两种选择,要么将总得分加上V,要么还可以向前走P步。
目标是使得走到N时的总得分最大。题目保证至少存在一种解。
这题DP方程很明显,从后往前进行dp, dp[i] = min(dp[i], dp[j]), i < j <= i + P[i];
所以对于每个点,要快速的求出dp[i]~dp[i + P[i]] 的最小值。
直到做这个题我才知道原来BIT也可以用来求最值,原来0base和1base是这个含义。。(数组下标从0/1开始)
原来BIT数组下标可以从0开始,貌似被称为0base邪教,如:for (int x = i; x >= 0; x -= ~x & x + 1) {}
这里很巧妙的利用了~x = - x + 1,即~x = -(x + 1),还有运算符的优先级。摘自叉姐代码。
1 #include <cmath>
2 #include <cstdio>
3 #include <vector>
4 #include <iostream>
5 #include <algorithm>
6 using namespace std;
7
8 #define rep(i, n) for (int i = (1); i <= (n); i++)
9 typedef long long LL;
10 const int MAX_N = 500050;
11 const LL INF = (LL)1e18;
12 int V[MAX_N], P[MAX_N];
13 LL tree[MAX_N];
14 int N;
15
16 int main() {
17 scanf("%d", &N);
18 for (int i = 1; i <= N; i++) scanf("%d %d", V+i, P+i);
19
20 fill(tree+1, tree+N+1, -INF);
21 LL ans = tree[N] = V[N], sum = 0;
22 for (int i = N-1; i >= 1; i--) {
23 ans = -INF;
24 for (int x = min(i+P[i], N); x > 0; x -= x&-x)
25 ans = max(ans, tree[x]);
26 if (ans > -INF) {
27 for (int x = i; x <= N; x += x&-x)
28 tree[x] = max(tree[x], ans - V[i]);
29 }
30
31 ans += sum;
32 sum += V[i];
33 }
34 printf("%lld
", ans);
35
36 return 0;
37 }