• RTX 3090的深度学习环境配置指南:Pytorch、TensorFlow、Keras。配置显卡


    最近刚入了3090,发现网上写的各种环境配置相当混乱而且速度很慢。所以自己测了下速度最快的3090配置环境,欢迎补充!

    基本环境(整个流程大约需要5分钟甚至更少)

    py37或py38
    cuda11.1
    tf2.5(tf-nightly)或 tf1.15.4
    pytorch1.8
    keras2.3

    (1)安装gcc

    sudo apt install build-essential
    gcc -v #查看gcc版本

    (2)官网下载对应版本显卡驱动及cuda:(以下版本对应11.1cuda,此处安装cuda是为了tf的某个缺失的文件)

    wget https://developer.download.nvidia.com/compute/cuda/11.1.0/local_installers/cuda_11.1.0_455.23.05_linux.run
    sudo sh cuda_11.1.0_455.23.05_linux.run

    (3)安装Anaconda并换源

    bash Anaconda3-5.2.0-Linux-x86_64.sh
    vim ~/.bashrc
    export PATH=/home/yukyin/anaconda3/bin:$PATH(在文件末尾处添加该语句)
    source ~/.bashrc
    
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge 
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
    conda config --set show_channel_urls yes
    之后vim ~/.condarc,把defaults删掉

    (4)创建虚拟环境,一般用py37或py38(以下都在虚拟环境中操作)

    conda create -n exp38 python==3.8
    conda activate exp38 

    (5)安装pytorch

    官网下载cuda11.1轮子:torch-1.8.1+cu111-cp38-cp38-linux_x86_64.whl

    pip install torch-1.8.1+cu111-cp38-cp38-linux_x86_64.whl #在轮子所在的目录下操作

    (6)装tf2.5(不要装tensorflow-gpu==2.4.0rc0,会报错'NoneType' object has no attribute 'TFE_MonitoringDeleteBuckets')

    pip install tf-nightly-gpu -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
    pip install tf-nightly -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
    conda install cudatoolkit=11.0
    cp /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcusolver.so.11.0.0.74 /home/yukyin/anaconda3/envs/exp382/lib/
    mv /home/yukyin/anaconda3/envs/exp382/lib/libcusolver.so.11.0.0.74 /home/yukyin/anaconda3/envs/exp382/lib/libcusolver.so.11.0

    (7)装tf1.15

    pip install nvidia-pyindex -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
    pip install nvidia-tensorflow -i http://pypi.douban.com/simple --trusted-host pypi.douban.com

    (8)装keras2.3

    pip install keras==2.3 -i http://pypi.douban.com/simple --trusted-host pypi.douban.com

    (10)测试(使用cuda10.2也可以测试使用gpu,但貌似不能把数据写入gpu)

    pytorch

    tensorflow-2.5或1.15.4

    keras(测试需要改部分源码_get_available_gpus())

    import tensorflow as tf
    import keras.backend.tensorflow_backend as tfback
    print("tf.__version__ is", tf.__version__)
    print("tf.keras.__version__ is:", tf.keras.__version__)
     
    def _get_available_gpus():
        if tfback._LOCAL_DEVICES is None:
            devices = tf.config.list_logical_devices()
            tfback._LOCAL_DEVICES = [x.name for x in devices]
        return [x for x in tfback._LOCAL_DEVICES if 'device:gpu' in x.lower()]
    tfback._get_available_gpus = _get_available_gpus
    
    from keras import backend as K
    K.tensorflow_backend._get_available_gpus()

    后记:不需要单独配cuda、cudnn,在虚拟环境里搞就行了。

    参考:https://zhuanlan.zhihu.com/p/279401802

  • 相关阅读:
    触发器(2)
    触发器
    GZipStream
    MemoryStream类读写内存
    ashx一般处理程序
    Redmin 一键安装
    Unity3D和网页数据交互的基本原理
    apk MIME类型
    [leetcode]Valid Sudoku
    [leetcode]Search in Rotated Sorted Array
  • 原文地址:https://www.cnblogs.com/StarZhai/p/15534347.html
Copyright © 2020-2023  润新知