• opencv画轨迹


    1.检测人脸,画人脸中心的运动轨迹

    import cv2
    import numpy as np
    #import argparse
    from collections import deque
    #ap = argparse.ArgumentParser()
    #args = vars(ap.parse_args())
    face_cascade=cv2.CascadeClassifier("F:/software/anaconda/installdocument/Lib/site-packages/cv2/data/haarcascade_frontalface_alt2.xml")
    cap=cv2.VideoCapture(0)
    pts = deque(maxlen=124)
    while True:
        ret,frame=cap.read()
        frame=cv2.flip(frame,1)
           # print i.shape
        gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
        faces=face_cascade.detectMultiScale(gray,1.3,5)
        l=len(faces)
        print (l)
        for (x,y,w,h) in faces:
            cv2.rectangle(frame,(x,y),(x+w,y+h),(0,200,200),2)
            cv2.putText(frame,'face',(int(w/2+x),int(y-h/5)),cv2.FONT_HERSHEY_PLAIN,2.0,(255,255,255),2,1)
            center=(int(x+w/2),int(y+h/2))
            print (center)
            pts.appendleft(center)
            for i in range(1,len(pts)):
                if pts[i-1]is None or pts[i]is None:
                    continue
                thickness = int(np.sqrt(64 / float(i + 1)) * 2)
                cv2.line(frame, pts[i - 1], pts[i], (0, 225, 225), thickness)
            cv2.imshow("rstp",frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    #摄像头释放
    cap.release()
    #销毁所有窗口
    cv2.destroyAllWindows()

    2.获取视频中特定区域的颜色点运动轨迹

    from collections import  deque  
    import numpy as np  
    #import imutils  
    import cv2  
    import time  
    #设定红色阈值,HSV空间  
    redLower = np.array([130, 51, 51])  
    redUpper = np.array([255, 255, 255])  
    #初始化追踪点的列表  
    mybuffer = 64  
    pts = deque(maxlen=mybuffer)  
    #打开摄像头  
    camera = cv2.VideoCapture(0)  
    #等待两秒  
    time.sleep(2)  
    #遍历每一帧,检测红色瓶盖  
    while True:  
        #读取帧  
        (ret, frame) = camera.read()  
        #判断是否成功打开摄像头  
        if not ret:  
            print ('No Camera'  )
            break  
        #frame = imutils.resize(frame, width=600)  
        #转到HSV空间  
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)  
        #根据阈值构建掩膜  
        mask = cv2.inRange(hsv, redLower, redUpper)  
        #腐蚀操作  
        mask = cv2.erode(mask, None, iterations=2)  
        #膨胀操作,其实先腐蚀再膨胀的效果是开运算,去除噪点  
        mask = cv2.dilate(mask, None, iterations=2)  
        #轮廓检测  
        cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]  
        #初始化瓶盖圆形轮廓质心  
        center = None  
        #如果存在轮廓  
        if len(cnts) > 0:  
            #找到面积最大的轮廓  
            c = max(cnts, key = cv2.contourArea)  
            #确定面积最大的轮廓的外接圆  
            ((x, y), radius) = cv2.minEnclosingCircle(c)  
            #计算轮廓的矩  
            M = cv2.moments(c)  
            #计算质心  
            center = (int(M["m10"]/M["m00"]), int(M["m01"]/M["m00"]))  
            #只有当半径大于10时,才执行画图  
            if radius > 10:  
                cv2.circle(frame, (int(x), int(y)), int(radius), (0, 255, 255), 2)  
                cv2.circle(frame, center, 5, (0, 0, 255), -1)  
                #把质心添加到pts中,并且是添加到列表左侧  
                pts.appendleft(center)  
        #遍历追踪点,分段画出轨迹  
        for i in range(1, len(pts)):  
            if pts[i - 1] is None or pts[i] is None:  
                continue  
            #计算所画小线段的粗细  
            thickness = int(np.sqrt(mybuffer / float(i + 1)) * 2.5)  
            #画出小线段  
            cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)  
        #res = cv2.bitwise_and(frame, frame, mask=mask)  
        cv2.imshow('Frame', frame)  
        #键盘检测,检测到esc键退出  
        k = cv2.waitKey(5)&0xFF  
        if k == 27:  
            break  
    #摄像头释放  
    camera.release()  
    #销毁所有窗口  
    cv2.destroyAllWindows() 

    参考:https://blog.csdn.net/xiao__run/article/details/80572523

  • 相关阅读:
    有关php.ini配置文件的安全设置
    零基础如何系统地学习前端开发?
    DEDE CMS 使用dede的sql标签 获取文章链接地址
    DedeCMS系统函数列表及用法详解
    日常生活中有哪些十分钟就能学会并可以终生受用的技能?(转)
    CSS-DOM
    Ajax和Hijax
    动态创建标记的三种方法
    关于最佳实践
    浅析DOM
  • 原文地址:https://www.cnblogs.com/StarZhai/p/12096105.html
Copyright © 2020-2023  润新知