• Infinite Inversions(树状数组+离散化)


    思路及代码参考:https://blog.csdn.net/u014800748/article/details/45420085

    There is an infinite sequence consisting of all positive integers in the increasing order: p = {1, 2, 3, ...}. We performed n swap operations with this sequence. A swap(a, b) is an operation of swapping the elements of the sequence on positions aand b. Your task is to find the number of inversions in the resulting sequence, i.e. the number of such index pairs (i, j), that i < j and pi > pj.

    Input

    The first line contains a single integer n (1 ≤ n ≤ 105) — the number of swapoperations applied to the sequence.

    Each of the next n lines contains two integers ai and bi (1 ≤ ai, bi ≤ 109ai ≠ bi) — the arguments of the swap operation.

    Output

    Print a single integer — the number of inversions in the resulting sequence.

    Examples

    Input
    2
    4 2
    1 4
    Output
    4
    Input
    3
    1 6
    3 4
    2 5
    Output
    15

    Note

    In the first sample the sequence is being modified as follows: . It has 4 inversions formed by index pairs (1, 4), (2, 3), (2, 4) and (3, 4).

    代码:

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<stack>
    #include<set>
    #include<vector>
    #include<cmath>
    const int maxn=2e5+5;
    typedef long long ll;
    using namespace std;
    
    ll s[maxn],sum[maxn];
    int ss[maxn];
    int a[maxn],b[maxn],pos[maxn];
    int lowbit(int x)
    {
        return x&(-x);
    }
    int n;
    void update(int pos,int ad)
    {
        while(pos<=maxn)
        {
            s[pos]+=ad;
            pos+=lowbit(pos);
        }
    }
    ll getnum(int pos)
    {
        ll res=0;
        while(pos>0)
        {
            res+=s[pos];
            pos-=lowbit(pos);
        }
        return res;
    }
    int main()
    {
        int n;
        while (~scanf("%d", &n))
        {
            for (int i = 1; i <= n; i++)
            {
                scanf("%d%d", &a[i], &b[i]);
                ss[i] = a[i]; 
                ss[i + n] = b[i];
                pos[i] = i; 
                pos[i + n] = i + n;
            }
            sort(ss + 1, ss + 2 * n + 1);
            ss[0] = 0;
            int cnt = 0;
            for (int i = 1; i <= 2 * n;i++)
            if (i == 1 || ss[i] != ss[i - 1])
                ss[++cnt] = ss[i];
            sum[0] = 0;
            for (int i = 1; i <= cnt; i++)
                sum[i] = sum[i - 1] + ss[i] - ss[i - 1] - 1;
            for (int i = 1; i <= n; i++)
            {
                int aa = lower_bound(ss + 1, ss + cnt + 1, a[i]) - ss;
                int bb = lower_bound(ss + 1,ss + cnt + 1, b[i]) - ss;
                swap(pos[aa], pos[bb]);
            }
            memset(s, 0, sizeof(s));
            ll ans = 0;
            for (int i = cnt; i; i--)
            {
                ans += getnum(pos[i]);
                ans += abs(sum[i]-sum[pos[i]]);
                update(pos[i], 1);
            }
            printf("%lld
    ", ans);
        }
    
       return 0;
    }
  • 相关阅读:
    数据库基础——EXISTS和IN
    C#基础——加密
    C#基础——派生和继承
    SQL Server——报表服务
    SQL Server——SQL Server Profiler
    UML基础——UML简介和历史
    C#基础——密码加密
    C#(ASP.NET)错误: 无法获取属性“0”的值: 对象为 null 或未定义 关键字 'user' 附近有语法错误。
    SQL Server——存储过程
    链表的声明及操作
  • 原文地址:https://www.cnblogs.com/Staceyacm/p/11312245.html
Copyright © 2020-2023  润新知