• HDU-4417-Super Mario(主席树解法)


    Mario is world-famous plumber. His “burly” figure and amazing jumping ability reminded in our memory. Now the poor princess is in trouble again and Mario needs to save his lover. We regard the road to the boss’s castle as a line (the length is n), on every integer point i there is a brick on height hi. Now the question is how many bricks in [L, R] Mario can hit if the maximal height he can jump is H.

    InputThe first line follows an integer T, the number of test data. 
    For each test data: 
    The first line contains two integers n, m (1 <= n <=10^5, 1 <= m <= 10^5), n is the length of the road, m is the number of queries. 
    Next line contains n integers, the height of each brick, the range is [0, 1000000000]. 
    Next m lines, each line contains three integers L, R,H.( 0 <= L <= R < n 0 <= H <= 1000000000.)OutputFor each case, output "Case X: " (X is the case number starting from 1) followed by m lines, each line contains an integer. The ith integer is the number of bricks Mario can hit for the ith query. 
    Sample Input

    1
    10 10
    0 5 2 7 5 4 3 8 7 7 
    2 8 6
    3 5 0
    1 3 1
    1 9 4
    0 1 0
    3 5 5
    5 5 1
    4 6 3
    1 5 7
    5 7 3

    Sample Output

    Case 1:
    4
    0
    0
    3
    1
    2
    0
    1
    5
    1

    求一个区间比小于等于K的个数 我们就可以去查询第R个版本的线段树-第L-1个版本的线段树的数量
    代码:
    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<stack>
    #include<set>
    #include<map>
    #include<vector>
    #include<cmath>
    
    const int maxn=1e5+5;
    typedef long long ll;
    using namespace std;
    struct node
    {
        int l,r;
        int sum;
    }tree[maxn*20];
    int cnt,root[maxn];
    int a[maxn];
    vector<int>v;
    int getid(int x)
    {
        return lower_bound(v.begin(),v.end(),x)-v.begin()+1;
    }
    void build(int &u,int l,int r)
    {
        u=++cnt;
        tree[u].sum=0;
        if(l==r)return ;
        int mid=(l+r)/2;
        build(tree[u].l,l,mid);
        build(tree[u].r,mid+1,r);
    }
    void update(int l,int r,int pre,int &now,int p)
    {
        tree[++cnt]=tree[pre];
        now=cnt;
        tree[now].sum++; 
        if(l==r)
        {
            return ;
        }
        int mid=(l+r)>>1;
        if(p<=mid)
        {
            update(l,mid,tree[pre].l,tree[now].l,p);
        } 
        else
        {
            update(mid+1,r,tree[pre].r,tree[now].r,p);
        }
    }
    int query(int l,int r,int L,int R,int k)
    {
      if(l==r)
      {
          return tree[R].sum-tree[L].sum;
      }
      int mid=(l+r)>>1;
      if(k<=mid)
      {
          return query(l,mid,tree[L].l,tree[R].l,k);
      }
      else
      {
          ll ans=tree[tree[R].l].sum-tree[tree[L].l].sum;
        ans+=query(mid+1,r,tree[L].r,tree[R].r,k);
        return ans;
      }
    } 
    int main()
    { 
        int T;
        cin>>T;
        int cc=1;
        while(T--)
        {
          int n,m;
          scanf("%d%d",&n,&m);
          cnt=0;
          for(int t=1;t<=n;t++)
          {
              v.clear();
          }
          for(int t=1;t<=n;t++)
          {
              scanf("%d",&a[t]);
              v.push_back(a[t]);
          }    
          
          sort(v.begin(),v.end());
          v.erase(unique(v.begin(),v.end()),v.end());
          build(root[0],1,n);
          for(int t=1;t<=n;t++)
          {
              update(1,n,root[t-1],root[t],getid(a[t]));
          }
          int x,y,k;
          printf("Case %d:
    ",cc++);
          while(m--)
          {
              scanf("%d%d%d",&x,&y,&k);
              k=upper_bound(v.begin(),v.end(),k)-v.begin();
              if(k==0)
              {
                  puts("0");
                  continue;
            }
              x++;
              y++;
              printf("%d
    ",query(1,n,root[x-1],root[y],k));
          }
        }
        return 0;
    } 
  • 相关阅读:
    Spoj-DWARFLOG Manipulate Dwarfs
    Spoj-DRUIDEOI Fata7y Ya Warda!
    LightOJ1106 Gone Fishing
    LightOJ1125 Divisible Group Sums
    hdu5396 Expression
    cf715B Complete The Graph
    cf601A The Two Routes
    cf602B Approximating a Constant Range
    cf602A Two Bases
    认证方式
  • 原文地址:https://www.cnblogs.com/Staceyacm/p/11307906.html
Copyright © 2020-2023  润新知