• KNN算法:KNN-classifier和KNN-regressor


    KNN-classifier:

     1 from sklearn.datasets import make_blobs
     2 #用于生成聚类算法的测试数据
     3 from sklearn.neighbors import KNeighborsClassifier
     4 from sklearn.model_selection import train_test_split
     5 import matplotlib.pyplot as plt
     6 data=make_blobs(n_samples=200,centers=2,random_state=8)
     7 X,y=data
     8 plt.scatter(X[:,0],X[:,1],c=y,cmap=plt.cm.spring,edgecolors='k')
     9 #print(X)
    10 #print(y)
    11 plt.show()
     1 import numpy as np
     2 clf=KNeighborsClassifier()
     3 clf.fit(X,y)
     4 print(clf)
     5 x_min=X[:,0].min()-1
     6 x_max=X[:,0].max()+1
     7 y_min=X[:,1].min()-1
     8 y_max=X[:,1].max()+1
     9 xx,yy=np.meshgrid(np.arange(x_min,x_max,.02),
    10                   np.arange(y_min,y_max,.02))
    11 Z=clf.predict(np.c_[xx.ravel(),yy.ravel()])
    12 Z=Z.reshape(xx.shape)
    13 plt.pcolormesh(xx,yy,Z,cmap=plt.cm.Pastel1)
    14 plt.scatter(X[:,0],X[:,1],c=y,cmap=plt.cm.spring,edgecolors='k')
    15 plt.xlim(xx.min(),xx.max())
    16 plt.ylim(yy.min(),yy.max())
    17 plt.title("Classifier:KNN")
    18 plt.suptitle("myfirstML")
    19 
    20 plt.scatter(6.75,4.82,marker='*',c='red',s=200)
    21 plt.show()
    1 data2=make_blobs(n_samples=500,centers=5,random_state=8)
    2 X2,y2=data2
    3 plt.scatter(X2[:,0],X2[:,1],c=y2,cmap=plt.cm.spring,edgecolor='k')
    4 plt.show()
     1 clf=KNeighborsClassifier()
     2 clf.fit(X2,y2)
     3 x_min=X2[:,0].min()-1
     4 x_max=X2[:,0].max()+1
     5 y_min=X2[:,1].min()-1
     6 y_max=X2[:,1].max()+1
     7 xx,yy=np.meshgrid(np.arange(x_min,x_max,.02),
     8                   np.arange(y_min,y_max,.02))
     9 Z=clf.predict(np.c_[xx.ravel(),yy.ravel()])
    10 Z=Z.reshape(xx.shape)
    11 plt.pcolormesh(xx,yy,Z,cmap=plt.cm.Pastel1)
    12 plt.scatter(X2[:,0],X2[:,1],c=y2,cmap=plt.cm.spring,edgecolors='k')
    13 plt.xlim(xx.min(),xx.max())
    14 plt.ylim(yy.min(),yy.max())
    15 plt.title("Classifier:KNN")
    16 plt.suptitle("mysecondML")
    17 plt.show()

    KNN-regressor:

    1 from sklearn.model_selection import train_test_split
    2 import matplotlib.pyplot as plt
    3 from sklearn.datasets import make_regression
    4 X,y=make_regression(n_features=1,n_informative=1,noise=50,random_state=8)
    5 plt.scatter(X,y,c='orange',edgecolors='k')
    6 plt.show()
     1 from sklearn.neighbors import KNeighborsRegressor
     2 import numpy as np
     3 reg=KNeighborsRegressor()
     4 reg.fit(X,y)
     5 z=np.linspace(-3,3,200).reshape(-1,1)
     6 plt.scatter(X,y,c='orange',edgecolors='k')
     7 plt.plot(z,reg.predict(z),c='k',linewidth=2)
     8 plt.title("KNN Regressior")
     9 plt.suptitle("mythirdML")
    10 print("the score of this model:{:.2f}".format(reg.score(X,y)))
    11 plt.show()
    1 reg2=KNeighborsRegressor(n_neighbors=2)
    2 reg2.fit(X,y)
    3 plt.scatter(X,y,c='orange',edgecolors='k')
    4 plt.plot(z,reg2.predict(z),c='k',linewidth=2)
    5 plt.title("KNN Regressior2")
    6 plt.suptitle("myfourthML")
    7 print("the score of this model:{:.2f}".format(reg2.score(X,y)))
    8 plt.show()
     1 from sklearn.datasets import load_wine
     2 wine_dataset=load_wine()
     3 print("{}".format(wine_dataset.keys()))
     4 print("{}".format(wine_dataset['data'].shape))
     5 print("{}".format(wine_dataset['DESCR']))
     6 from sklearn.model_selection import train_test_split
     7 X_train,X_test,y_train,y_test=train_test_split(
     8     wine_dataset['data'],wine_dataset['target'],random_state=0
     9 )
    10 print("{}".format(X_train.shape))
    11 print("{}".format(X_test.shape))
    12 print("{}".format(y_train.shape))
    13 print("{}".format(y_test.shape))
    1 from sklearn.neighbors import KNeighborsClassifier
    2 knn=KNeighborsClassifier(n_neighbors=1)
    3 knn.fit(X_train,y_train)
    4 print(knn)
    5 print("the score of this model:{:.2f}".format(knn.score(X_test,y_test)))
    1 import numpy as np
    2 X_new=np.array([[13.2,2.77,2.51,18.5,96.6,1.04,2.55,0.57,1.47,6.2,1.05,3.33,820]])
    3 prediction=knn.predict(X_new)
    4 print("the prediction is {}".format(wine_dataset['target_names'][prediction]))
  • 相关阅读:
    《数据库系统概论》 -- 3.2. 视图
    Uncaught SecurityError: Failed to execute 'replaceState' on 'History': A history state object with
    在node.js中使用mongose模块
    在centos7上作用mongodb
    Error: listen EADDRINUSE
    telnet: connect to address xxxxxxx: No route to host
    express-generator安装时出错,最后用VPS解决
    centos7中 npm install express 时Error: Cannot find module 'express'错误
    ubuntu1404服务器版中设置root用户
    python爬虫(1)
  • 原文地址:https://www.cnblogs.com/St-Lovaer/p/12243933.html
Copyright © 2020-2023  润新知