• #bitset优化,莫队#洛谷 5355 [Ynoi2017] 由乃的玉米田


    没有除法的版本
    弱化版Blog
    题目


    分析

    只针对除法而言,如果商很大直接用bitset判断是否存在,

    否则直接预处理最近的答案判断是否在区间内即可,注意0要特判


    代码

    #include <cstdio>
    #include <cctype>
    #include <bitset>
    #include <algorithm>
    #define rr register
    using namespace std;
    const int N=100011,base=316; bitset<N>uk,ku;
    struct five{int opt,l,r,x,rk,Is;}q[N];
    int kuai[N],Sqrt[N],a[N],ans[N],m,n,Q,CNT[N],last[N],mx[N];
    inline signed iut(){
    	rr int ans=0; rr char c=getchar();
    	while (!isdigit(c)) c=getchar();
    	while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
    	return ans;
    }
    bool cmp(five a,five b){
    	if (a.Is&&b.Is) return a.x>b.x;
    	if (a.Is||b.Is) return b.Is;
        if (kuai[a.l]^kuai[b.l]) return a.l<b.l;
        if (kuai[a.r]^kuai[b.r]) return kuai[a.l]&1?a.r<b.r:a.r>b.r;
        return (kuai[a.l]^kuai[a.r])&1?a.x<b.x:a.x>b.x;
    }
    inline signed max(int a,int b){return a>b?a:b;}
    inline void add(int now){if (++CNT[now]==1) uk[now]=ku[N-now-1]=1;}
    inline void del(int now){if (--CNT[now]==0) uk[now]=ku[N-now-1]=0;}
    signed main(){
    	n=iut(); Q=iut();
    	for (rr int i=1;i<=base;++i) Sqrt[i*i]=i;
    	for (rr int i=1;i<N;++i) if (!Sqrt[i]) Sqrt[i]=Sqrt[i-1];
    	for (rr int i=1;i<=n;++i) a[i]=iut(),kuai[i]=(i-1)/base+1;
    	for (rr int i=1;i<=Q;++i) q[i]=(five){iut(),iut(),iut(),iut(),i,0},q[i].Is=q[i].opt==4&&q[i].x<=base;
    	sort(q+1,q+1+Q,cmp),m=Q; for (;m&&q[m].Is;--m);
    	for (rr int l=m+1,r;l<=Q;l=r+1){
    	    for (r=l;r<=Q&&q[r].x==q[l].x;++r); --r;
    	    if (!q[l].x){
    	    	for (rr int i=1,now=0;i<=n;++i){
    			    if (!a[i]) now=i;
    			    mx[i]=now;
    	    	}
    	    	for (rr int i=l;i<=r;++i){
    			    if (q[i].l==q[i].r) continue; 
    		        if (q[i].l<=mx[q[i].r])
    		            ans[q[i].rk]=1;
    			}
    			continue;
    		}
    	    for (rr int i=0;i<N;++i) last[i]=0;
    	    for (rr int i=1,now=0;i<=n;++i){
    	        last[a[i]]=i;
    			if (a[i]*q[l].x<N) now=max(now,last[a[i]*q[l].x]);
    	    	if (a[i]%q[l].x==0) now=max(now,last[a[i]/q[l].x]);
    	    	mx[i]=now;
    		}
    		for (rr int i=l;i<=r;++i)
    		if (q[i].l<=mx[q[i].r])
    		    ans[q[i].rk]=1;
    	}
    	for (rr int i=1,L=q[1].l,R=L-1;i<=m;++i){
    		while (L>q[i].l) add(a[--L]);
    		while (L<q[i].l) del(a[L++]);
    		while (R>q[i].r) del(a[R--]);
    		while (R<q[i].r) add(a[++R]);
    		switch (q[i].opt){
    			case 1:ans[q[i].rk]=(uk&(uk<<q[i].x)).any(); break;
    			case 2:ans[q[i].rk]=(uk&(ku>>(N-q[i].x-1))).any(); break;
    			case 3:{
    				if (!q[i].x&&uk[q[i].x]) {ans[q[i].rk]=1; break;} 
    				for (rr int j=1;j<=Sqrt[q[i].x];++j)
    				if (q[i].x%j==0&&uk[j]&&uk[q[i].x/j]){
    					ans[q[i].rk]=1; break;
    				}
    				break;
    			}
    			case 4:{
    				rr int t=(N-1)/q[i].x;
    				for (rr int j=1;j<=t;++j)
    				if (uk[j]&&uk[j*q[i].x]){
    					ans[q[i].rk]=1; break;
    				}
    				break;
    			}
    		}
    	}
    	for (rr int i=1;i<=Q;++i)
    	if (ans[i]) printf("yuno
    ");
    	    else printf("yumi
    ");
    	return 0;
    }
    
  • 相关阅读:
    【hdu 6214】Smallest Minimum Cut
    Spring Boot核心配置
    Spring Cloud是什么?
    Spring Boot开启的2种方式
    JVM运行时区域详解。
    史上最全Java多线程面试题及答案
    Git文件操作命令
    Git的安装配置
    Git SSH连接方式配置
    Intellij Idea乱码解决方案都在这里了
  • 原文地址:https://www.cnblogs.com/Spare-No-Effort/p/14487788.html
Copyright © 2020-2023  润新知