SP7001 VLATTICE - Visible Lattice Points(洛谷题目传送门)
SP7001 VLATTICE - Visible Lattice Points(SPOJ)
题目
问从((1,1,1))能看到((1sim L,1sim W,1sim H))中的多少个点
SP7001 VLATTICE保证(L=W=H),且是从((0,0,0))开始看((0sim L,0sim W,0sim H))
分析
将坐标平移到((0,0,0))可以转换成同样的问题,那这题就是就转换成三个平面和一个立体再加上三个坐标轴,
平面就是仪仗队,立体可以用同样的方法推式子,
最后答案就是
[ans=3+ans_2(L,W)+ans_2(L,H)+ans_2(W,H)+ans_3(L,W,H)
]
时间复杂度(O(Tsqrt L))
代码
#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
typedef long long lll;
const int N=1000000; bool v[N|31];
int mu[N|31],prime[N|31],Cnt,A,B,C,mn;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline signed min(int a,int b){return a<b?a:b;}
inline lll Two(int n,int m){
rr int MN=min(n,m); rr lll ans=0;
for (rr int l=1,r,z1,z2;l<=MN;l=r+1){
z1=n/l,z2=m/l,r=min(n/z1,m/z2);
ans+=1ll*(mu[r]-mu[l-1])*z1*z2;
}
return ans;
}
signed main(){
mu[1]=1;
for (rr int i=2;i<=N;++i){
if (!v[i]) prime[++Cnt]=i,mu[i]=-1;
for (rr int j=1;j<=Cnt&&prime[j]<=N/i;++j){
v[i*prime[j]]=1;
if (i%prime[j]==0) break;
mu[i*prime[j]]=-mu[i];
}
}
for (rr int i=2;i<=N;++i) mu[i]+=mu[i-1];
for (rr lll ans;scanf("%d%d%d",&A,&B,&C)==3;){
--A,--B,--C,mn=min(min(A,B),C);
ans=3+Two(A,B)+Two(A,C)+Two(B,C);
for (rr int l=1,r,zA,zB,zC;l<=mn;l=r+1){
zA=A/l,zB=B/l,zC=C/l,r=min(min(A/zA,B/zB),C/zC);
ans+=1ll*(mu[r]-mu[l-1])*zA*zB*zC;
}
printf("%lld
",ans);
}
return 0;
}