• #李超线段树,树链剖分#洛谷 4069 [SDOI2016]游戏


    题目


    分析

    就是把线段扔到了树上,注意区间查询要比较两个端点的函数值,
    把区间赋值转换成两部分,从起点到LCA的区间是斜率为负数的线段,
    从终点到LCA的区间是斜率为正数的线段。


    代码

    #include <cstdio>
    #include <cctype>
    #include <algorithm>
    #define rr register
    using namespace std;
    typedef long long lll;
    const int N = 100011;
    struct node {
        int y, w, next;
    } e[N << 1];
    int p[N << 2], Tot, dep[N], top[N], k = 1, tot, fat[N], nfd[N], dfn[N], son[N], big[N], n, m, as[N];
    struct rec {
        lll a, b;
    } line[N << 1];
    lll dis[N], w[N << 2];
    inline signed iut() {
        rr int ans = 0, f = 1;
        rr char c = getchar();
        while (!isdigit(c)) f = (c == '-') ? -f : f, c = getchar();
        while (isdigit(c)) ans = (ans << 3) + (ans << 1) + (c ^ 48), c = getchar();
        return ans * f;
    }
    inline void print(lll ans) {
        if (ans < 0)
            ans = -ans, putchar('-');
        if (ans > 9)
            print(ans / 10);
        putchar(ans % 10 + 48);
    }
    inline lll min(lll a, lll b) { return a < b ? a : b; }
    inline lll calc(int t, int x) { return line[t].a * dis[nfd[x]] + line[t].b; }
    inline void build(int k, int l, int r) {
        p[k] = 1, w[k] = line[1].b;
        if (l == r)
            return;
        rr int mid = (l + r) >> 1;
        build(k << 1, l, mid);
        build(k << 1 | 1, mid + 1, r);
    }
    inline void update(int k, int l, int r, int x, int y, int z) {
        rr int mid = (l + r) >> 1;
        if (x <= l && r <= y) {
            rr lll la = calc(p[k], l), lb = calc(z, l);
            rr lll ra = calc(p[k], r), rb = calc(z, r), mb = min(lb, rb);
            if (la <= lb && ra <= rb)
                return;
            if (la >= lb && ra >= rb) {
                p[k] = z, w[k] = min(w[k], mb);
                return;
            }
            rr double pos = 1.0 * (line[p[k]].b - line[z].b) / (line[z].a - line[p[k]].a);
            if (la >= lb) {
                if (pos <= dis[nfd[mid]])
                    update(k << 1, l, mid, x, y, z);
                else
                    update(k << 1 | 1, mid + 1, r, x, y, p[k]), p[k] = z;
            } else {
                if (pos > dis[nfd[mid]])
                    update(k << 1 | 1, mid + 1, r, x, y, z);
                else
                    update(k << 1, l, mid, x, y, p[k]), p[k] = z;
            }
            w[k] = min(min(w[k], mb), min(w[k << 1], w[k << 1 | 1]));
            return;
        }
        if (x <= mid)
            update(k << 1, l, mid, x, y, z);
        if (mid < y)
            update(k << 1 | 1, mid + 1, r, x, y, z);
        w[k] = min(w[k], min(w[k << 1], w[k << 1 | 1]));
    }
    inline signed lca(int x, int y) {
        while (top[x] != top[y]) {
            if (dep[top[x]] < dep[top[y]])
                x ^= y, y ^= x, x ^= y;
            x = fat[top[x]];
        }
        if (dep[x] > dep[y])
            x ^= y, y ^= x, x ^= y;
        return x;
    }
    inline lll query(int k, int l, int r, int x, int y) {
        if (l == x && r == y)
            return w[k];
        rr int mid = (l + r) >> 1;
        rr lll lT = calc(p[k], x), rT = calc(p[k], y), mT = min(lT, rT);
        if (y <= mid)
            return min(mT, query(k << 1, l, mid, x, y));
        else if (x > mid)
            return min(mT, query(k << 1 | 1, mid + 1, r, x, y));
        else
            return min(mT, min(query(k << 1, l, mid, x, mid), query(k << 1 | 1, mid + 1, r, mid + 1, y)));
    }
    inline void Update(int x, int LCA, int z) {
        for (; top[x] != top[LCA]; x = fat[top[x]]) update(1, 1, n, dfn[top[x]], dfn[x], z);
        update(1, 1, n, dfn[LCA], dfn[x], z);
    }
    inline lll Query(int x, int y) {
        rr lll ans = line[1].b;
        while (top[x] != top[y]) {
            if (dep[top[x]] < dep[top[y]])
                x ^= y, y ^= x, x ^= y;
            ans = min(ans, query(1, 1, n, dfn[top[x]], dfn[x]));
            x = fat[top[x]];
        }
        if (dep[x] > dep[y])
            x ^= y, y ^= x, x ^= y;
        return ans = min(ans, query(1, 1, n, dfn[x], dfn[y]));
    }
    inline void dfs1(int x, int fa) {
        dep[x] = dep[fa] + 1, fat[x] = fa, son[x] = 1;
        for (rr int i = as[x], mson = -1; i; i = e[i].next)
            if (e[i].y != fa) {
                dis[e[i].y] = dis[x] + e[i].w, dfs1(e[i].y, x), son[x] += son[e[i].y];
                if (son[e[i].y] > mson)
                    big[x] = e[i].y, mson = son[e[i].y];
            }
    }
    inline void dfs2(int x, int linp) {
        dfn[x] = ++tot, nfd[tot] = x, top[x] = linp;
        if (!big[x])
            return;
        dfs2(big[x], linp);
        for (rr int i = as[x]; i; i = e[i].next)
            if (e[i].y != fat[x] && e[i].y != big[x])
                dfs2(e[i].y, e[i].y);
    }
    signed main() {
        n = iut();
        m = iut();
        for (rr int i = 1; i < n; ++i) {
            rr int x = iut(), y = iut(), w = iut();
            e[++k] = (node){ y, w, as[x] }, as[x] = k;
            e[++k] = (node){ x, w, as[y] }, as[y] = k;
        }
        line[Tot = 1] = (rec){ 0, 123456789123456789ll };
        dfs1(1, 0), dfs2(1, 1), build(1, 1, n);
        for (rr int i = 1; i <= m; ++i)
            if (iut() & 1) {
                rr int x = iut(), y = iut(), A = iut(), B = iut(), LCA = lca(x, y);
                line[++Tot] = (rec){ -A, dis[x] * A + B }, Update(x, LCA, Tot);
                line[++Tot] = (rec){ A, (dis[x] - dis[LCA] * 2) * A + B }, Update(y, LCA, Tot);
            } else
                print(Query(iut(), iut())), putchar(10);
        return 0;
    }
    
  • 相关阅读:
    SQL语句集(转)
    Oracle 数据库 for update / for update nowait 的区别
    XML 关键字
    JAVA 操作 DBF 文件数据库
    Hibernate 懒加载和 Json 序列化冲突
    MYSQL 语法大全自己总结的
    php-laravel中间件使用
    php-表单验证
    php-laravel安装与使用
    iOS 关于权限设置的问题
  • 原文地址:https://www.cnblogs.com/Spare-No-Effort/p/13821366.html
Copyright © 2020-2023  润新知