(Description)
有n个数,将其分为k段,每段的值为这一段的总共数字种类,问最大总值是多少
(Solution)
DP,用(f[i][j])表示当前在i 分成了j份(第j份包括i)
那枚举前边的断点k,即
(f[i][j]=max{f[k][j-1]+val(k+1,1)})
(val(a,b))表示([a,b])这段区间的价值(数字种数)
(O(n^2*k))
第二维可以滚动数组优化掉,只在最外层枚举即可
优化求(val())的过程
val是与数的种类数有关,所以对于a[i],在计算([1,las[a[i]]])的val[]时,a[i]不会做出贡献;
而用([las[a[i]]+1,i])计算val时,a[i]会有1的贡献
即用(f[k](k∈[1, las[a[i]]-1]))时,不会有a[i]的贡献;
而用(f[k](k∈[las[a[i]], i-1]))更新时,a[i]会对其产生贡献(k这个点是不在后一个区间里的)
在这段区间+1,然后查询最优值,更新f[i]
区间加、区间查询最优值 -> 线段树
/*
592ms 8400KB
注意1.可以从f[0]更新
2.查询位置与第一层循环的关系
3.开四倍空间...
基本线段树都不会写了...
*/
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
//#define gc() getchar()
#define gc() (SS==IN &&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=35005,MAXIN=5e6;
int n,k,A[N],f[N],las[N],tmp[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
struct Seg_Tree
{
int maxv[N<<2],tag[N<<2];
inline void PushUp(int rt)
{
maxv[rt]=std::max(maxv[rt<<1],maxv[rt<<1|1]);
}
inline void PushDown(int rt)
{
maxv[rt<<1]+=tag[rt], maxv[rt<<1|1]+=tag[rt];
tag[rt<<1]+=tag[rt], tag[rt<<1|1]+=tag[rt];
tag[rt]=0;
}
void Build(int l,int r,int rt)
{
tag[rt]=0;
if(l==r) {maxv[rt]=f[l]; return;}
int m=l+r>>1;
Build(l,m,rt<<1), Build(m+1,r,rt<<1|1);
PushUp(rt);
}
void Modify(int l,int r,int rt,int L,int R)
{
if(L<=l && r<=R)
{
++maxv[rt], ++tag[rt];
return;
}
if(tag[rt]) PushDown(rt);
int m=l+r>>1;
if(L<=m) Modify(l,m,rt<<1,L,R);
if(m<R) Modify(m+1,r,rt<<1|1,L,R);
PushUp(rt);
}
int Query(int l,int r,int rt,int L,int R)
{
if(L<=l && r<=R) return maxv[rt];
if(tag[rt]) PushDown(rt);
int m=l+r>>1;
if(L<=m)
if(m<R) return std::max(Query(l,m,rt<<1,L,R),Query(m+1,r,rt<<1|1,L,R));
else return Query(l,m,rt<<1,L,R);
else return Query(m+1,r,rt<<1|1,L,R);
}
}t;
int main()
{
#ifndef ONLINE_JUDGE
freopen("D.in","r",stdin);
#endif
n=read(),k=read();
for(int i=1;i<=n;++i)
A[i]=read(), las[i]=tmp[A[i]], tmp[A[i]]=i;
// for(int i=1;i<=n;++i) printf("%d %d
",A[i],las[i]);
for(int i=1;i<=k;++i)
{
t.Build(0,n,1);
for(int j=i;j<=n;++j)
t.Modify(0,n,1,las[j],j-1),f[j]=t.Query(0,n,1,i-1,j-1);
}
printf("%d",f[n]);
return 0;
}
堆式存储:(多维护了ls,rs而只少了两倍空间,所以空间优化不大)(写这个纯粹闲的)
/*
624ms 9400KB 和另一个差不了多少
注意1.可以从f[0]更新
2.查询位置与第一层循环的关系
*/
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
//#define gc() getchar()
#define gc() (SS==IN &&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define lson node[rt].ls
#define rson node[rt].rs
const int N=35005,MAXIN=5e6;
int n,k,A[N],f[N],las[N],tmp[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
struct Seg_Tree
{
int tot;
struct Node
{
int ls,rs,maxv,tag;
}node[N<<1];
inline void PushUp(int rt)
{
node[rt].maxv=std::max(node[lson].maxv,node[rson].maxv);
}
inline void PushDown(int rt)
{
node[lson].maxv+=node[rt].tag, node[rson].maxv+=node[rt].tag;
node[lson].tag+=node[rt].tag, node[rson].tag+=node[rt].tag;
node[rt].tag=0;
}
void Build(int l,int r)
{
int p=tot++;
node[p].tag=0;
if(l==r) { node[p].ls=node[p].rs=-1,node[p].maxv=f[l]; return;}
int m=l+r>>1;
node[p].ls=tot, Build(l,m);
node[p].rs=tot, Build(m+1,r);
PushUp(p);
}
void Modify(int l,int r,int rt,int L,int R)
{
if(L<=l && r<=R)
{
++node[rt].maxv, ++node[rt].tag;
return;
}
if(node[rt].tag) PushDown(rt);
int m=l+r>>1;
if(L<=m) Modify(l,m,lson,L,R);
if(m<R) Modify(m+1,r,rson,L,R);
PushUp(rt);
}
int Query(int l,int r,int rt,int L,int R)
{
if(L<=l && r<=R) return node[rt].maxv;
if(node[rt].tag) PushDown(rt);
int m=l+r>>1;
if(L<=m)
if(m<R) return std::max(Query(l,m,lson,L,R),Query(m+1,r,rson,L,R));
else return Query(l,m,lson,L,R);
else return Query(m+1,r,rson,L,R);
}
}t;
int main()
{
#ifndef ONLINE_JUDGE
freopen("D.in","r",stdin);
#endif
n=read(),k=read();
for(int i=1;i<=n;++i)
A[i]=read(), las[i]=tmp[A[i]], tmp[A[i]]=i;
// for(int i=1;i<=n;++i) printf("%d %d
",A[i],las[i]);
for(int i=1;i<=k;++i)
{
t.tot=0, t.Build(0,n);
for(int j=i;j<=n;++j)
t.Modify(0,n,0,las[j],j-1),f[j]=t.Query(0,n,0,i-1,j-1);
}
printf("%d",f[n]);
return 0;
}