(Solution)
参考
对于每个点,向唯一有可能与它形成MST的8个点连边,由于是双向单边,所以每个点最多连出4条边(证明见blog)
怎么找到一个区域内最近的点?
只考虑y轴右侧45°的区域,其余部分可以通过坐标变换移动到这一区域
设当前点P(x0,y0),这一区域一点P1(x1,y1),满足x1>x0 && y1-x1>y0-x0
那么dis(AB)= y1-y0+x1-x0 = x1+y1-(x0+y0)
这样这一区域内dis(AB)最小的点即 在满足之前条件的点中 x1+y1最小的点
先对x排序;then由于是只查询某个后缀,可以对y-x离散后用树状数组找到最小的x+y
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
#define lb(x) (x&-x)
#define gc() getchar()
#define dis(i,j) (std::abs(p[i].x-p[j].x)+std::abs(p[i].y-p[j].y))
const int N=5e4+5;
int n,Enum,fa[N],A[N],ref[N];
struct Point
{
int x,y,id;
inline bool operator <(const Point &a)const {return x==a.x?y<a.y:x<a.x;}
}p[N];
struct Bit_Tree
{
int val[N],pos[N];
inline void Init() {memset(val,0x7f,sizeof val);}
void Update(int p,int v,int vp)
{
for(;p;p-=lb(p))
if(val[p]>v) val[p]=v,pos[p]=vp;
}
int Query(int p,int n)
{
int mn=1<<30,res=-1;
for(;p<=n;p+=lb(p))
if(mn>val[p]) mn=val[p],res=pos[p];
return res;
}
}t;
struct Edge
{
int to,fr,val;
inline bool operator <(const Edge &a)const {return val<a.val;}
}e[N<<2];
inline void AddEdge(int u,int v,int w)
{
e[++Enum].to=v, e[Enum].fr=u, e[Enum].val=w;
}
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
int Getf(int x)
{
return x==fa[x]?x:fa[x]=Getf(fa[x]);
}
int MST()
{
for(int dir=0;dir<4;++dir)//坐标变换
{//Time1.不变
if(dir==1||dir==3)
for(int i=1;i<=n;++i) std::swap(p[i].x,p[i].y);//T2.T4.关于y=x对称
else if(dir==2)
for(int i=1;i<=n;++i) p[i].x=-p[i].x;//T3.关于x=0对称
std::sort(p+1,p+1+n);
t.Init();
for(int i=1;i<=n;++i) A[i]=ref[i]=p[i].y-p[i].x;
std::sort(A+1,A+1+n);
int m=1; ref[1]=A[1];
for(int i=2;i<=n;++i)
if(A[i]!=A[i-1]) ref[++m]=A[i];
for(int pos,res,i=n;i;--i)
{
pos=std::lower_bound(ref+1,ref+1+m,p[i].y-p[i].x)-ref;
if((res=t.Query(pos,m))!=-1) AddEdge(p[i].id,p[res].id,dis(i,res));
t.Update(pos,p[i].x+p[i].y,i);
}
}
std::sort(e+1,e+1+Enum);
for(int i=1;i<=n;++i) fa[i]=i;
int res=0;
for(int r1,r2,i=1,k=0;i<=Enum;++i)
{
r1=Getf(e[i].fr),r2=Getf(e[i].to);
if(r1!=r2)
{
res+=e[i].val, fa[r1]=r2;
if(++k==n-1) break;
}
}
return res;
}
int main()
{
n=read();
for(int i=1;i<=n;++i) p[i].x=read(),p[i].y=read(),p[i].id=i;
printf("%d",MST());
return 0;
}