(Description)
给定平面上(n)个不同的点,求一个排列(P_i),使得(forall iin[1,n-2]),(P_i,P_{i+1},P_{i+2})依次相连构成的角为锐角。无解输出-1。
(nleq 5000)。
(Solution)
连边和判断锐角,考虑大角对大边,只需要让(|P_{i}P_{i+2}|)不是最长边即可。所以直接令(|P_iP_{i+1}|>|P_iP_{i+2}|),即(i)每次向最远的点连边,一定可以满足(|P_iP_{i+2}|)不是最长边,这样一定有解。
//109ms 100KB
#include <bits/stdc++.h>
#define pc putchar
#define gc() getchar()
#define pb push_back
#define Dis(i,j) 1ll*(x[i]-x[j])*(x[i]-x[j])+1ll*(y[i]-y[j])*(y[i]-y[j])
typedef long long LL;
const int N=5005;
int x[N],y[N],vis[N];
inline int read()
{
int now=0,f=1; char c=gc();
for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now*f;
}
int main()
{
int n=read();
for(int i=1; i<=n; ++i) x[i]=read(),y[i]=read();
printf("%d",1);
for(int now=1,i=2; i<=n; ++i)
{
vis[now]=1;
LL mx=0; int p=0;
for(int j=1; j<=n; ++j)
if(!vis[j] && Dis(now,j)>mx) mx=Dis(now,j), p=j;
printf(" %d",now=p);
}
return 0;
}