• BZOJ.5286.[AHOI/HNOI2018]转盘(线段树)


    BZOJ
    LOJ
    洛谷


    如果从(1)开始,把每个时间(t_i)减去(i),答案取决于(max{t_i-i})。记取得最大值的位置是(p),答案是(t_p+1+n-1-p=max{t_i-i}+1+n-1)
    把环拆成链,每次询问就可以(O(n))求了(滑动窗口)。

    考虑怎么维护答案:(minlimits_{i=1}^n{maxlimits_{j=i}^{i+n-1}{t_j-j}+i}+n-1)
    放宽一下条件,即(Ans=minlimits_{i=1}^n{maxlimits_{j=i}^{2n}{t_j-j}+i}+n-1),用线段树维护区间(max{t_i-i})。需要的是个后缀最大值,所以合并的时候考虑一下右区间对左区间的贡献维护(min)就可以了(同[BZOJ2957]楼房重建,虽然没写过...)。

    具体:维护区间(max{t_i-i})和最小值(ans[rt])(最小值此时只考虑当前节点右区间对左区间的影响)。合并的时候二分当前右区间的最大值(val)能影响到左区间的哪个位置:如果左区间的某个(mx[rson]geq val),该区间后缀最大值的影响就是(mx[rson]),直接用(ans[rt])更新一下然后递归右区间;否则右区间的最小值就是(val+mid+1),递归左区间。
    (或者也可以,找到第一个(>val)的位置(p),然后用(val+p+1)(p)之前的(ans)更新答案)

    另外注意到最后的答案就是拿([n+1,2n])的最大值在([1,n])中二分得到的,而([n+1,2n])的最大值就是([1,n])的最大值(-n)。所以只维护([1,n])的线段树就可以了,查询的时候用([1,n])的最大值(-n)([1,n])二分一下。

    复杂度(O(nlog^2n))


    //8152kb	1656ms
    #include <cstdio>
    #include <cctype>
    #include <algorithm>
    //#define gc() getchar()
    #define MAXIN 300000
    #define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
    typedef long long LL;
    const int N=2e5+5,INF=1<<30;
    
    int tm[N];
    char IN[MAXIN],*SS=IN,*TT=IN;
    
    inline int read()
    {
    	int now=0;register char c=gc();
    	for(;!isdigit(c);c=gc());
    	for(;isdigit(c);now=now*10+c-48,c=gc());
    	return now;
    }
    struct Segment_Tree
    {
    	#define ls rt<<1
    	#define rs rt<<1|1
    	#define lson l,m,ls
    	#define rson m+1,r,rs
    	#define S N<<2
    	int ans[S],mx[S];
    	#undef S
    	int Query(int l,int r,int rt,int val)
    	{
    		if(l==r) return mx[rt]>val?val+l+1:INF;
    		int m=l+r>>1;
    		return mx[rs]>val?std::min(ans[rt],Query(rson,val)):Query(lson,val);//找第一个>val的位置 
    //		if(l==r) return l+std::max(mx[rt],val);//both are ok...
    //		int m=l+r>>1;
    //		return mx[rs]>=val?std::min(ans[rt],Query(rson,val)):std::min(val+m+1,Query(lson,val));//考虑val的影响 
    	}
    	void Update(int l,int r,int rt)
    	{
    		mx[rt]=std::max(mx[ls],mx[rs]);
    		ans[rt]=Query(l,l+r>>1,ls,mx[rs]);
    	}
    	void Build(int l,int r,int rt)
    	{
    		if(l==r) {/*ans[rt]=tm[l],*/ mx[rt]=tm[l]-l; return;}
    		int m=l+r>>1;
    		Build(lson), Build(rson), Update(l,r,rt);
    	}
    	void Modify(int l,int r,int rt,int p,int v)
    	{
    		if(l==r) {/*ans[rt]=v,*/ mx[rt]=v-l; return;}
    		int m=l+r>>1;
    		p<=m ? Modify(lson,p,v) : Modify(rson,p,v);
    		Update(l,r,rt);
    	}
    }T;
    
    int main()
    {
    //	freopen("circle.in","r",stdin);
    //	freopen("circle.out","w",stdout);
    
    	const int n=read(),m=read(),P=read();
    	for(int i=1; i<=n; ++i) tm[i]=read();
    	T.Build(1,n,1);
    	int ans; printf("%d
    ",ans=T.Query(1,n,1,T.mx[1]-n)+n-1);
    	for(int i=1; i<=m; ++i)
    	{
    		int x=read(),y=read();
    		if(P) x^=ans, y^=ans;
    		T.Modify(1,n,1,x,y);
    		printf("%d
    ",ans=T.Query(1,n,1,T.mx[1]-n)+n-1);
    	}
    
    	return 0;
    }
    

    考试时的代码:

    #include <queue>
    #include <cstdio>
    #include <cctype>
    #include <algorithm>
    #define mp std::make_pair
    #define pr std::pair<int,int>
    #define gc() getchar()
    #define MAXIN 300000
    //#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
    typedef long long LL;
    const int N=2e5+5;
    
    int tm[N];
    char IN[MAXIN],*SS=IN,*TT=IN;
    
    inline int read()
    {
    	int now=0;register char c=gc();
    	for(;!isdigit(c);c=gc());
    	for(;isdigit(c);now=now*10+c-48,c=gc());
    	return now;
    }
    namespace Subtask1
    {
    	struct Segment_Tree
    	{
    		#define ls rt<<1
    		#define rs rt<<1|1
    		#define lson l,m,ls
    		#define rson m+1,r,rs
    		#define S N<<2
    		pr mx[S];
    		#undef S
    		#define Update(rt) mx[rt]=std::max(mx[ls],mx[rs])
    		void Build(int l,int r,int rt)
    		{
    			if(l==r) {mx[rt]=mp(tm[l]-l,l); return;}
    			int m=l+r>>1;
    			Build(lson), Build(rson), Update(rt);
    		}
    		void Modify(int l,int r,int rt,int p)
    		{
    			if(l==r) {mx[rt]=mp(tm[l]-l,l); return;}
    			int m=l+r>>1;
    			p<=m ? Modify(lson,p) : Modify(rson,p);
    			Update(rt);
    		}
    		pr Query(int l,int r,int rt,int L,int R)
    		{
    			if(L<=l && r<=R) return mx[rt];
    			int m=l+r>>1;
    			if(L<=m)
    				if(m<R) return std::max(Query(lson,L,R),Query(rson,L,R));
    				else return Query(lson,L,R);
    			return Query(rson,L,R);
    		}
    	}T;
    	void Solve(int n)
    	{
    		int ans=1e9;
    		for(int i=1,p; i<=n; ++i)
    			p=T.Query(1,n<<1,1,i,i+n-1).second, ans=std::min(ans,tm[p]+i+n-1-p);
    		printf("%d
    ",ans);
    	}
    	void Main(int n,int m)//nmlog
    	{
    		T.Build(1,n<<1,1), Solve(n);
    		for(int i=1,p; i<=m; ++i)
    			p=read(), tm[p+n]=tm[p]=read(), T.Modify(1,n<<1,1,p), T.Modify(1,n<<1,1,p+n), Solve(n);
    	}
    }
    namespace Subtask2
    {
    	const int N=2e5+5;
    	int q[N],A[N];
    	void Solve(int n)
    	{
    		int n2=n<<1,ans=1e9;
    		for(int i=1; i<=n2; ++i) A[i]=tm[i]-i;
    		int h=1,t=0;
    		for(int i=1; i<n; ++i)
    		{
    			while(h<=t && A[i]>=A[q[t]]) --t;
    			q[++t]=i;
    		}
    		for(int i=1,p; i<=n; ++i)
    		{
    			while(h<=t && A[i+n-1]>=A[q[t]]) --t;
    			q[++t]=i+n-1;
    			if(q[h]<i) ++h;
    			p=q[h], ans=std::min(ans,tm[p]+i+n-1-p);
    		}
    		printf("%d
    ",ans);
    	}
    	void Main(int n,int m)
    	{
    		Solve(n);
    		for(int i=1; i<=m; ++i)
    		{
    			int p=read(); tm[p+n]=tm[p]=read();
    			Solve(n);
    		}
    	}
    }
    
    int main()
    {
    	freopen("circle.in","r",stdin);
    	freopen("circle.out","w",stdout);
    
    	int n=read(),m=read(),P=read();
    	for(int i=1; i<=n; ++i) tm[i+n]=tm[i]=read();
    	if(1ll*n*m<=5e5) return Subtask1::Main(n,m),0;
    	if(1ll*n*m<=2e8) return Subtask2::Main(n,m),0;
    	return puts("gl&hf"),0;
    
    	return 0;
    }
    
  • 相关阅读:
    Cookies的实际存储位置
    搭建Git本地服务器
    在Tomcat中部署war
    Server.xml配置解析
    Tomcat配置详解,配置文件server.xml详解
    将centos7打造成桌面系统
    英语词汇大全
    商场/超市常见英语标识
    商务英语词汇大全
    常用繁体字大全
  • 原文地址:https://www.cnblogs.com/SovietPower/p/10416650.html
Copyright © 2020-2023  润新知