• LuoguP4643 [国家集训队]阿狸和桃子的游戏


    题面:

    阿狸和桃子正在玩一个游戏,游戏是在一个带权图( m G=(V, E))上进行的,设节点权值为(w(v)),边权为(c(e))。游戏规则是这样的:

    阿狸和桃子轮流将图中的顶点染色,阿狸会将顶点染成红色,桃子会将顶点染成粉色。已经被染过色的点不能再染了,而且每一轮都必须给一个且仅一个顶点染色。

    为了保证公平性,节点的个数( m N)为偶数。

    经过( m N/2)轮游戏之后,两人都得到了一个顶点集合。对于顶点集合S,得分计算方式为

    [sum_{v in S}w(v) + sum_{e=(u,v)in E land u,vin S}c(e) ]

    由于阿狸石头剪子布输给了桃子,所以桃子先染色。两人都想要使自己的分数比对方多,且多得越多越好。如果两人都是采用最优策略的,求最终桃子的分数减去阿狸的分数。

    ( m Sol)

    首先可以考虑没有边权的情况

    那么就直接将点权排个序即可

    如果有边权呢?

    将每个边权拆成两半,一个给(u)一个给(v)

    然后就会发现如果某两个点不在同一集合,那么这两点的权值差将会恰好抵消

    (Code:)

    #include<bits/stdc++.h>
    using namespace std ;
    #define rep( i, s, t ) for( register int i = s; i <= t; ++ i )
    #define re register
    #define int long long
    int gi() {
    	char cc = getchar() ; int cn = 0, flus = 1 ;
    	while( cc < '0' || cc > '9' ) {  if( cc == '-' ) flus = - flus ; cc = getchar() ; }
    	while( cc >= '0' && cc <= '9' )  cn = cn * 10 + cc - '0', cc = getchar() ;
    	return cn * flus ;
    }
    const int N = 1e5 + 5 ; 
    int n, m ; 
    double A[N], Ans ;
    signed main()
    {
    	n = gi(), m = gi() ; 
    	int x, y, z ; 
    	rep( i, 1, n ) A[i] = gi() ; 
    	rep( i, 1, m ) x = gi(), y = gi(), z = gi(), A[x] += 0.5 * z, A[y] += 0.5 * z ;
    	sort( A + 1, A + n + 1 ) ;
    	for( re int i = n; i >= 1; -- i ) {
    		Ans += ( ( i & 1 ) ? -1 : 1 ) * A[i] ; 
    	}
    	printf("%lld
    ", (int)Ans ) ;
    	return 0 ;
    }
    
  • 相关阅读:
    Orleans的深入
    Orleans的入门教程
    .net core 微服务通讯组件Orleans的使用与配置
    AddTransient、AddSingleton、AddScoped的区别
    近期做架构师的总结
    大数据分析的深度与假象
    SQL反模式-1
    学习总结---INNODB 事务并发
    Tomcat的error-page掩盖action实例化的exception
    A SQL to insert continuous values
  • 原文地址:https://www.cnblogs.com/Soulist/p/11679618.html
Copyright © 2020-2023  润新知