• HDU1086判断线段相交


      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <cmath>
      5 #include <cstdlib>
      6 #include <algorithm>
      7 #include <vector>
      8 #include <stack>
      9 #include <queue>
     10 #include<cassert>
     11 #include<set>
     12 using namespace std ;
     13 #ifdef DeBUG
     14 #define bug assert
     15 #else
     16 #define bug //
     17 #endif
     18 #define eps 1e-6
     19 struct segment
     20 {
     21     double xs;
     22     double ys;
     23     double xe;
     24     double ye;
     25 };
     26 bool isintersect(segment s1,segment s2)
     27 {
     28     //有公共顶点判断 
     29     if((s1.xs==s2.xs&&s1.ys==s2.ys)||(s1.xs==s2.xe&&s1.ys==s2.ye)||(s1.xe==s2.xs&&s1.ye==s2.ys)||(s1.xe==s2.xe&&s1.ye==s2.ye))
     30     return true;
     31     //叉乘判断相交 
     32     double angle1=(s2.xs-s2.xe)*(s1.ys-s2.ye)-(s1.xs-s2.xe)*(s2.ys-s2.ye);
     33     double angle2=(s2.xs-s2.xe)*(s1.ye-s2.ye)-(s2.ys-s2.ye)*(s1.xe-s2.xe);
     34     if(angle1*angle2<0)
     35     {
     36         double angle3=(s1.xs-s1.xe)*(s2.ye-s1.ye)-(s2.xe-s1.xe)*(s1.ys-s1.ye);
     37         double angle4=(s1.xs-s1.xe)*(s2.ys-s1.ye)-(s1.ys-s1.ye)*(s2.xs-s1.xe);
     38         if(angle4>-eps&&angle4<eps) 
     39         {
     40             if(s2.xs>=min(s1.xe,s1.xs)&&s2.xs<=max(s1.xe,s1.xs)&&s2.ys>=min(s1.ye,s1.ys)&&s2.ys<=max(s1.ye,s1.ys))
     41             return true;
     42             else
     43             return false;
     44         }
     45         else if(angle3>-eps&&angle3<eps)
     46         {
     47             if(s2.xe>=min(s1.xe,s1.xs)&&s2.xe<=max(s1.xe,s1.xs)&&s2.ye>=min(s1.ye,s1.ys)&&s2.ye<=max(s1.ye,s1.ys))
     48             return true;
     49             else
     50             return false;
     51         }
     52         else if(angle3*angle4<0)
     53         return true;
     54         else
     55         return false;
     56     }
     57     else if(angle1>-eps&&angle1<eps) 
     58     {
     59         if(s1.xs>=min(s2.xe,s2.xs)&&s1.xs<=max(s2.xe,s2.xs)&&s1.ys>=min(s2.ye,s2.ys)&&s1.ys<=max(s2.ye,s2.ys))
     60         return true;
     61         else
     62         return false;
     63     }
     64     else if(angle2>-eps&&angle2<eps)
     65     {
     66         if(s1.xe>=min(s2.xe,s2.xs)&&s1.xe<=max(s2.xe,s2.xs)&&s1.ye>=min(s2.ye,s2.ys)&&s1.ye<=max(s2.ye,s2.ys))
     67         return true;
     68         else
     69         return false;
     70     }
     71     else
     72     return false;
     73 }
     74 int main()
     75 {
     76     #ifdef DeBUG
     77         freopen("C:\Users\Sky\Desktop\1.in","r",stdin);
     78     #endif
     79     
     80     int n;
     81     while(scanf("%d",&n),n)
     82     {
     83         int i,j,k;
     84         segment d[101];
     85         int cnt=0;
     86         for(i=0;i<n;i++)
     87         {
     88             scanf("%lf%lf%lf%lf",&d[i].xs,&d[i].ys,&d[i].xe,&d[i].ye);
     89         }
     90         for(i=0;i<n;i++)
     91         {
     92             for(j=i+1;j<n;j++)
     93             {
     94 
     95                     if(isintersect(d[i],d[j]))
     96                     cnt++;
     97             }
     98         }
     99         printf("%d
    ",cnt);
    100     }
    101     return 0;
    102 }
    View Code

    原创代码,可做模板,上万数据测试通过

    关于那几个angle注释,当angle为0时判断点是否在另一条线段上,如angle1=0,s1s是否在s2上

     

    添加求交点函数

    补充一个求交点的题

    F - Intersecting Lines
    Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u

    Description

    We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.  Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000. 

    Input

    The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

    Output

    There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

    Sample Input

    5
    0 0 4 4 0 4 4 0
    5 0 7 6 1 0 2 3
    5 0 7 6 3 -6 4 -3
    2 0 2 27 1 5 18 5
    0 3 4 0 1 2 2 5
    

    Sample Output

    INTERSECTING LINES OUTPUT
    POINT 2.00 2.00
    NONE
    LINE
    POINT 2.00 5.00
    POINT 1.07 2.20
    END OF OUTPUT
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <cmath>
      5 #include <cstdlib>
      6 #include <algorithm>
      7 #include <vector>
      8 #include <stack>
      9 #include <queue>
     10 #include<cassert>
     11 #include<set>
     12 using namespace std ;
     13 #ifdef DeBUG
     14 #define bug assert
     15 #else
     16 #define bug //
     17 #endif
     18 #define eps 1e-6
     19 struct segment
     20 {
     21     double xs;
     22     double ys;
     23     double xe;
     24     double ye;
     25 };
     26 double interx(segment s1,segment s2)
     27 {
     28     double a,b,c,d;
     29     a=s1.xe-s1.xs ;
     30     b=s1.ye-s1.ys ;
     31     c=s2.xe-s2.xs ;
     32     d=s2.ye-s2.ys ;
     33     if(a*d==b*c)
     34     {
     35         if((s2.xs-s1.xs)*b==(s2.ys-s1.ys)*a)
     36             return -1;//共线
     37         else return 0;//无交点
     38     }
     39     double x0=(a*d*s2.xs-b*c*s1.xs+a*c*s1.ys-a*c*s2.ys)/(a*d-b*c);
     40     return x0;
     41 }
     42 double intery(segment s1,segment s2)
     43 {
     44     double a,b,c,d;
     45     a=s1.xe-s1.xs ;
     46     b=s1.ye-s1.ys ;
     47     c=s2.xe-s2.xs ;
     48     d=s2.ye-s2.ys ;
     49     if(a*d==b*c)
     50     {
     51         if((s2.xs-s1.xs)*b==(s2.ys-s1.ys)*a)
     52             return -1;//共线
     53         else return 0;//无交点
     54     }
     55     double  y0=(a*d*s1.ys-b*c*s2.ys+b*d*s2.xs-b*d*s1.xs)/(a*d-b*c);
     56     return y0;
     57 }
     58 bool isintersect(segment s1,segment s2)
     59 {
     60     //有公共顶点判断 
     61     if((s1.xs==s2.xs&&s1.ys==s2.ys)||(s1.xs==s2.xe&&s1.ys==s2.ye)||(s1.xe==s2.xs&&s1.ye==s2.ys)||(s1.xe==s2.xe&&s1.ye==s2.ye))
     62     return true;
     63     //叉乘判断相交 
     64     double angle1=(s2.xs-s2.xe)*(s1.ys-s2.ye)-(s1.xs-s2.xe)*(s2.ys-s2.ye);
     65     double angle2=(s2.xs-s2.xe)*(s1.ye-s2.ye)-(s2.ys-s2.ye)*(s1.xe-s2.xe);
     66     if(angle1*angle2<0)
     67     {
     68         double angle3=(s1.xs-s1.xe)*(s2.ye-s1.ye)-(s2.xe-s1.xe)*(s1.ys-s1.ye);
     69         double angle4=(s1.xs-s1.xe)*(s2.ys-s1.ye)-(s1.ys-s1.ye)*(s2.xs-s1.xe);
     70         if(angle4>-eps&&angle4<eps) 
     71         {
     72             if(s2.xs>=min(s1.xe,s1.xs)&&s2.xs<=max(s1.xe,s1.xs)&&s2.ys>=min(s1.ye,s1.ys)&&s2.ys<=max(s1.ye,s1.ys))
     73             return true;
     74             else
     75             return false;
     76         }
     77         else if(angle3>-eps&&angle3<eps)
     78         {
     79             if(s2.xe>=min(s1.xe,s1.xs)&&s2.xe<=max(s1.xe,s1.xs)&&s2.ye>=min(s1.ye,s1.ys)&&s2.ye<=max(s1.ye,s1.ys))
     80             return true;
     81             else
     82             return false;
     83         }
     84         else if(angle3*angle4<0)
     85         return true;
     86         else
     87         return false;
     88     }
     89     else if(angle1>-eps&&angle1<eps) 
     90     {
     91         if(s1.xs>=min(s2.xe,s2.xs)&&s1.xs<=max(s2.xe,s2.xs)&&s1.ys>=min(s2.ye,s2.ys)&&s1.ys<=max(s2.ye,s2.ys))
     92         return true;
     93         else
     94         return false;
     95     }
     96     else if(angle2>-eps&&angle2<eps)
     97     {
     98         if(s1.xe>=min(s2.xe,s2.xs)&&s1.xe<=max(s2.xe,s2.xs)&&s1.ye>=min(s2.ye,s2.ys)&&s1.ye<=max(s2.ye,s2.ys))
     99         return true;
    100         else
    101         return false;
    102     }
    103     else
    104     return false;
    105 }
    106 int main()
    107 {
    108     #ifdef DeBUG
    109         freopen("C:\Users\Sky\Desktop\1.in","r",stdin);
    110     #endif
    111     
    112     int n;
    113     printf("INTERSECTING LINES OUTPUT
    ");
    114     while(scanf("%d",&n)!=EOF)
    115     {
    116         int i,j,k;
    117         segment d[101];
    118         segment s1,s2;
    119         int cnt=0;
    120         for(i=0;i<n;i++)
    121         {
    122             scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&s1.xs,&s1.ys,&s1.xe,&s1.ye,&s2.xs,&s2.ys,&s2.xe,&s2.ye);
    123                     if(interx(s1,s2)==-1)
    124                     {
    125                         printf("LINE
    ");
    126                     } 
    127                     else if(interx(s1,s2)==0)
    128                     {
    129                         printf("NONE
    ");
    130                     }
    131                     else
    132                     {
    133                         printf("POINT %.2lf %.2lf
    ",interx(s1,s2),intery(s1,s2));
    134                     }
    135         }
    136     }
    137     printf("END OF OUTPUT
    ");
    138     return 0;
    139 }
    View Code

     这个版也可以

    对应POJ 2653 Pick-up sticks

     1 #include<stdio.h>
     2 #include<time.h>
     3 struct point
     4 {
     5     double x,y;
     6 };
     7 struct stick
     8 {
     9     point u,v;
    10 }s[100005];
    11 double cross(point &a, point &b, point &o)
    12 {
    13     return (a.x-o.x)*(b.y-o.y)-(a.y-o.y)*(b.x-o.x);
    14 }
    15 double min(double &a, double &b)
    16 {
    17     return a<b?a:b;
    18 }
    19 double max(double &a, double &b)
    20 {
    21     return a>b?a:b;
    22 }
    23 bool quick(stick &a, stick &b)
    24 {
    25     return max(a.u.x, a.v.x)>min(b.u.x, b.v.x) and max(a.u.y, a.v.y)>min(b.u.y, b.v.y) and max(b.u.x, b.v.x)>min(a.u.x, a.v.x) and max(b.u.y, b.v.y)>min(a.u.y, a.v.y);
    26 }
    27 bool check(stick &a, stick &b)
    28 {
    29     if(quick(a,b))
    30     {
    31         return cross(a.u,b.u,b.v)*cross(a.v,b.u,b.v)<-1e-8 and cross(b.u,a.u,a.v)*cross(b.v,a.u,a.v)<-1e-8;
    32     }
    33     return false;
    34 }
    35         int is[100002]={0};
    36 int main()
    37 {
    38 //    freopen("C:\Users\Sky\Desktop\1.in","r",stdin);//PLEASE DELETE IT!!!!!!!!!!!!!!!!!!!!!!!!
    39     int n;
    40     int i,j;
    41     while(scanf("%d",&n),n)
    42     {
    43         for(i=1;i<=n;i++)
    44         {
    45             scanf("%lf%lf%lf%lf",&s[i].u.x,&s[i].u.y,&s[i].v.x,&s[i].v.y);
    46             is[i]=1;
    47             for(j=1;j<i;j++)
    48             {
    49                 if(is[j])
    50                 {
    51                     if(check(s[i],s[j]))
    52                     is[j]=0;
    53                 }
    54             }
    55         }
    56    
    57         int _flag=1;
    58         for(i=1;i<=n;i++)
    59         {
    60             if(is[i])
    61             {
    62                 if(_flag==1)
    63                 {
    64                     _flag=0;
    65                     printf("Top sticks: %d",i);
    66                     continue;
    67                 }
    68                 else
    69                 printf(", %d",i);
    70             }
    71         }
    72         printf(".
    ");
    73         
    74     }
    75  //   printf("Time used = %.0lf ms
    ",(double)(1000*clock()/CLOCKS_PER_SEC));
    76     return 0;
    77 }
    View Code

    然后是我的版的应用于此题

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <cmath>
      5 #include <cstdlib>
      6 #include <algorithm>
      7 #include <vector>
      8 #include <stack>
      9 #include <queue>
     10 #include <cassert>
     11 #include <set>
     12 #include <sstream>
     13 #include <map>
     14 using namespace std ;
     15 #ifdef DeBUG
     16 #define bug assert
     17 #else
     18 #define bug //
     19 #endif
     20 #define zero {0}
     21 #define eps 1e-6
     22 struct segment
     23 {
     24     double xs;
     25     double ys;
     26     double xe;
     27     double ye;
     28 };
     29 bool isintersect(segment s1,segment s2)
     30 {
     31     //有公共顶点判断 
     32     if((s1.xs==s2.xs&&s1.ys==s2.ys)||(s1.xs==s2.xe&&s1.ys==s2.ye)||(s1.xe==s2.xs&&s1.ye==s2.ys)||(s1.xe==s2.xe&&s1.ye==s2.ye))
     33     return true;
     34     //叉乘判断相交 
     35     double angle1=(s2.xs-s2.xe)*(s1.ys-s2.ye)-(s1.xs-s2.xe)*(s2.ys-s2.ye);
     36     double angle2=(s2.xs-s2.xe)*(s1.ye-s2.ye)-(s2.ys-s2.ye)*(s1.xe-s2.xe);
     37     if(angle1*angle2<0)
     38     {
     39         double angle3=(s1.xs-s1.xe)*(s2.ye-s1.ye)-(s2.xe-s1.xe)*(s1.ys-s1.ye);
     40         double angle4=(s1.xs-s1.xe)*(s2.ys-s1.ye)-(s1.ys-s1.ye)*(s2.xs-s1.xe);
     41         if(angle4>-eps&&angle4<eps) 
     42         {
     43             if(s2.xs>=min(s1.xe,s1.xs)&&s2.xs<=max(s1.xe,s1.xs)&&s2.ys>=min(s1.ye,s1.ys)&&s2.ys<=max(s1.ye,s1.ys))
     44             return true;
     45             else
     46             return false;
     47         }
     48         else if(angle3>-eps&&angle3<eps)
     49         {
     50             if(s2.xe>=min(s1.xe,s1.xs)&&s2.xe<=max(s1.xe,s1.xs)&&s2.ye>=min(s1.ye,s1.ys)&&s2.ye<=max(s1.ye,s1.ys))
     51             return true;
     52             else
     53             return false;
     54         }
     55         else if(angle3*angle4<0)
     56         return true;
     57         else
     58         return false;
     59     }
     60     else if(angle1>-eps&&angle1<eps) 
     61     {
     62         if(s1.xs>=min(s2.xe,s2.xs)&&s1.xs<=max(s2.xe,s2.xs)&&s1.ys>=min(s2.ye,s2.ys)&&s1.ys<=max(s2.ye,s2.ys))
     63         return true;
     64         else
     65         return false;
     66     }
     67     else if(angle2>-eps&&angle2<eps)
     68     {
     69         if(s1.xe>=min(s2.xe,s2.xs)&&s1.xe<=max(s2.xe,s2.xs)&&s1.ye>=min(s2.ye,s2.ys)&&s1.ye<=max(s2.ye,s2.ys))
     70         return true;
     71         else
     72         return false;
     73     }
     74     else
     75     return false;
     76 }
     77     segment a[100001];
     78     int is[100001];
     79 int main()
     80 {
     81     #ifdef DeBUG
     82         freopen("C:\Users\Sky\Desktop\1.in","r",stdin);
     83     #endif
     84     int n;
     85     int i,j,k;
     86 
     87     while(scanf("%d",&n),n)
     88     {
     89         for(i=0;i<n;i++)
     90         {
     91             scanf("%lf %lf %lf %lf",&a[i].xs,&a[i].ys,&a[i].xe,&a[i].ye);
     92     is[i]=1;
     93     /*
     94             for(j=0;j<i;j++)//的确暴力需要技巧 
     95             if(is[j])
     96             {
     97                 if(isintersect(a[i],a[j]))
     98                 is[j]=0;
     99             }*/
    100         }
    101         for(i=0;i<n;i++)
    102         {
    103             for(j=i+1;j<n;j++)
    104             {
    105                 if(isintersect(a[i],a[j]))
    106                 {
    107                     is[i]=0;
    108                     break;
    109                 }
    110             }
    111         }
    112         int _flag=1;
    113         for(i=0;i<n;i++)
    114         {
    115             if(is[i])
    116             {
    117                 if(_flag==1)
    118                 {
    119                     _flag=0;
    120                     printf("Top sticks: %d",i+1);
    121                     continue;
    122                 }
    123                 else
    124                 printf(", %d",i+1);
    125             }
    126         }
    127         printf(".
    ");
    128     }
    129     
    130     return 0;
    131 }
    View Code
  • 相关阅读:
    C#程序之Main()方法
    JavaScript引用类型之RegExp类型(正则表达式)
    正则表达式之量词(重复出现)?、*、+
    正则表达式一元字符与字符组
    正则表达式简介
    yii自动登录
    Yii学习
    改变Yii2的默认路由
    extract()函数
    html5标签figure、figcaption
  • 原文地址:https://www.cnblogs.com/Skyxj/p/3186268.html
Copyright © 2020-2023  润新知