• 自然数幂求和+杜教筛


    自然数幂求和

    1.

    高斯消元

    (观察)可得肯定是一个多项式

    推出来前几项 消元就行了

    2.

    倍增

    (from http://blog.csdn.net/werkeytom_ftd/article/details/50741165#reply)

    inline ll f(ll x,int y){
        if(x<N&&ff[x][y])return ff[x][y];
        if((it=F[y].find(x))!=F[y].end())return it->second;
        if(!x)return 0;
        if(x&1){
            if(x<N)return ff[x][y]=(f(x-1,y)+pw(x,y)+mod)%mod;
            return F[y][x]=(f(x-1,y)+pw(x,y)+mod)%mod;
        }
        ll res=0;
        for(ll j=0;j<=y;j++)
            res=(res+pw(x/2,y-j)*C[y][j]%mod*f(x/2,j))%mod;
        if(x<N)return ff[x][y]=(res+f(x/2,y)+mod)%mod;
        return F[y][x]=(res+f(x/2,y)+mod)%mod;
    }
    //By SiriusRen
    #include <map>
    #include <cstdio>
    using namespace std;
    const int N=2500000,mod=1000000007;
    typedef long long ll;
    ll ans,n;
    int C[15][15],k,ff[N][6],tot,phi[N],vis[N],prime[N];
    map<ll,ll>mp,F[6];map<ll,ll>::iterator it;
    void shai(){
        phi[1]=1;
        for(ll i=2;i<N;i++){
            if(!vis[i])prime[++tot]=i,phi[i]=i-1;
            for(ll j=1;i*prime[j]<N&&j<=tot;j++){
                phi[i*prime[j]]=phi[i]*(prime[j]-1),vis[i*prime[j]]=1;
                if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}
            }(phi[i]+=phi[i-1])%=mod;
        }
    }
    inline ll pw(ll x,ll y){
        ll res=1;x%=mod;
        while(y){
            if(y&1)res=res*x%mod;
            x=x*x%mod,y>>=1;
        }return res;
    }
    ll get_phi(ll x){
        if(x<N)return phi[x];
        if((it=mp.find(x))!=mp.end())return it->second;
        ll res=((x%mod)*((x+1)%mod))%mod*pw(2,mod-2)%mod;
        for(ll i=2,last;i<=x;i=last+1)
            last=x/(x/i),res=(res-get_phi(x/i)*((last-i+1)%mod))%mod;
        return mp[x]=(res+mod)%mod;
    }
    inline ll f(ll x,int y){
        if(x<N&&ff[x][y])return ff[x][y];
        if((it=F[y].find(x))!=F[y].end())return it->second;
        if(!x)return 0;
        if(x&1){
            if(x<N)return ff[x][y]=(f(x-1,y)+pw(x,y)+mod)%mod;
            return F[y][x]=(f(x-1,y)+pw(x,y)+mod)%mod;
        }
        ll res=0;
        for(ll j=0;j<=y;j++)
            res=(res+pw(x/2,y-j)*C[y][j]%mod*f(x/2,j))%mod;
        if(x<N)return ff[x][y]=(res+f(x/2,y)+mod)%mod;
        return F[y][x]=(res+f(x/2,y)+mod)%mod;
    }
    signed main(){
        shai(),scanf("%lld%d",&n,&k);
        for(int i=0;i<=10;i++){
            C[i][0]=C[i][i]=1;
            for(int j=1;j<i;j++)
                C[i][j]=C[i-1][j-1]+C[i-1][j];
        }
        for(ll i=1,last;i<=n;i=last+1)
            last=n/(n/i),ans=(ans+(f(last,k)-f(i-1,k)+mod)*(get_phi(n/i)*2-1))%mod;
        printf("%lld
    ",ans);
    }


    O(k2lognlogk)

  • 相关阅读:
    github替代品
    【推荐】通用全面的APP测试用例设计
    Jmeter 性能测试,完整入门篇
    2020年,有哪些特别好用的 app 测试工具?
    如何做好Web端性能测试?
    如何做Web服务的性能测试?
    Office 各版本批量授权(VOL)和激活方法
    django中引用bootstrap的几种方式
    list类型数据执行效率测试
    Linux安装python3环境
  • 原文地址:https://www.cnblogs.com/SiriusRen/p/6680642.html
Copyright © 2020-2023  润新知