自然数幂求和
1.
高斯消元
(观察)可得肯定是一个多项式
推出来前几项 消元就行了
2.
倍增
(from http://blog.csdn.net/werkeytom_ftd/article/details/50741165#reply)
inline ll f(ll x,int y){
if(x<N&&ff[x][y])return ff[x][y];
if((it=F[y].find(x))!=F[y].end())return it->second;
if(!x)return 0;
if(x&1){
if(x<N)return ff[x][y]=(f(x-1,y)+pw(x,y)+mod)%mod;
return F[y][x]=(f(x-1,y)+pw(x,y)+mod)%mod;
}
ll res=0;
for(ll j=0;j<=y;j++)
res=(res+pw(x/2,y-j)*C[y][j]%mod*f(x/2,j))%mod;
if(x<N)return ff[x][y]=(res+f(x/2,y)+mod)%mod;
return F[y][x]=(res+f(x/2,y)+mod)%mod;
}
//By SiriusRen #include <map> #include <cstdio> using namespace std; const int N=2500000,mod=1000000007; typedef long long ll; ll ans,n; int C[15][15],k,ff[N][6],tot,phi[N],vis[N],prime[N]; map<ll,ll>mp,F[6];map<ll,ll>::iterator it; void shai(){ phi[1]=1; for(ll i=2;i<N;i++){ if(!vis[i])prime[++tot]=i,phi[i]=i-1; for(ll j=1;i*prime[j]<N&&j<=tot;j++){ phi[i*prime[j]]=phi[i]*(prime[j]-1),vis[i*prime[j]]=1; if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;} }(phi[i]+=phi[i-1])%=mod; } } inline ll pw(ll x,ll y){ ll res=1;x%=mod; while(y){ if(y&1)res=res*x%mod; x=x*x%mod,y>>=1; }return res; } ll get_phi(ll x){ if(x<N)return phi[x]; if((it=mp.find(x))!=mp.end())return it->second; ll res=((x%mod)*((x+1)%mod))%mod*pw(2,mod-2)%mod; for(ll i=2,last;i<=x;i=last+1) last=x/(x/i),res=(res-get_phi(x/i)*((last-i+1)%mod))%mod; return mp[x]=(res+mod)%mod; } inline ll f(ll x,int y){ if(x<N&&ff[x][y])return ff[x][y]; if((it=F[y].find(x))!=F[y].end())return it->second; if(!x)return 0; if(x&1){ if(x<N)return ff[x][y]=(f(x-1,y)+pw(x,y)+mod)%mod; return F[y][x]=(f(x-1,y)+pw(x,y)+mod)%mod; } ll res=0; for(ll j=0;j<=y;j++) res=(res+pw(x/2,y-j)*C[y][j]%mod*f(x/2,j))%mod; if(x<N)return ff[x][y]=(res+f(x/2,y)+mod)%mod; return F[y][x]=(res+f(x/2,y)+mod)%mod; } signed main(){ shai(),scanf("%lld%d",&n,&k); for(int i=0;i<=10;i++){ C[i][0]=C[i][i]=1; for(int j=1;j<i;j++) C[i][j]=C[i-1][j-1]+C[i-1][j]; } for(ll i=1,last;i<=n;i=last+1) last=n/(n/i),ans=(ans+(f(last,k)-f(i-1,k)+mod)*(get_phi(n/i)*2-1))%mod; printf("%lld ",ans); }
O(k2lognlogk)