• 【转帖】径向分布函数程序与简单说明 (小木虫)


    径向分布函数g(r)代表了球壳内的平均数密度

    为离中心分子距离为r,体积为 的球壳内的瞬时分子数。
    具体参见李如生,《平衡和非平衡统计力学》科学出版社:1995

    CODE:

    SUBROUTINE GR(NSWITCH)
          IMPLICIT DOUBLE PRECISION(A-H,O-Z)
          PARAMETER(NM=40000,PI=3.141592653589793D0,NHIS=100)
          COMMON/LCS/X0(3,-2:2*NM),X(3,-2:2*NM,5),XIN(3,-2:2*NM),
         $XX0(3,-2:2*NM),XX(3,-2:2*NM,5),XXIN(3,-2:2*NM)
          COMMON/MOLEC/LPBC(3),MOLSP,MOLSA,NBX,NBY,NBZ,NPLA,LPBCSM,NC,NN,MC
          COMMON/WALLS/HI(3,3),G(3,3),DH,AREA,VOLUME,SCM(3)
          COMMON/PBCS/HALF,PBCX,PBCY,PBCZ
            COMMON/GR_VAR/ NGR
            DIMENSION H(3,3),GG(0:NHIS),R(0:NHIS)
          EQUIVALENCE(X0(1,-2),H(1,1))
    C   *****************************************************************
    C      如何确定分子数密度:DEN_IDEAL 
    C      取分子总数作为模拟盒中的数密度,可保证采样分子总数=总分子数?
    C====================================================================
    C         N1=MOLSP+1
    C      N2=MOLSP+NC

          DEN_IDEAL=MOLSP  

            G11=G(1,1)
          G22=G(2,2)
          G33=G(3,3)
          G12D=G(1,2)+G(2,1)
          G13D=G(1,3)+G(3,1)
          G23D=G(2,3)+G(3,2)


          IF(NSWITCH.EQ.0)THEN
              NGR=0
              DELR=HALF/NHIS
              DO I=1,NHIS
               GG(I)=0.D0 
               R(I)=0.D0 
              ENDDO 

          ELSE IF(NSWITCH.EQ.1)THEN
             NGR=NGR+1
           DO I=1,MOLSP-1
             DO J=I+1,MOLSP
    C====================================================================
    C     USE PBC IN X DIRECTION:  SUITABLE FOR PBCX=1
    C                              NOT GREAT PROBLEM FOR PBCX=0 
    C                              (THIS TIME USUALLY |DELTA X| < HALF)
    C====================================================================
              XIJ=X0(1,I)-X0(1,J)
            IF(XIJ.GT.+HALF)XIJ=XIJ-PBCX
            IF(XIJ.LT.-HALF)XIJ=XIJ+PBCX
            YIJ=X0(2,I)-X0(2,J)
            IF(YIJ.GT.+HALF)YIJ=YIJ-PBCY
            IF(YIJ.LT.-HALF)YIJ=YIJ+PBCY
            ZIJ=X0(3,I)-X0(3,J)
            IF(ZIJ.GT.+HALF)ZIJ=ZIJ-PBCZ
            IF(ZIJ.LT.-HALF)ZIJ=ZIJ+PBCZ
            RSQ=XIJ*(G11*XIJ+G12D*YIJ+G13D*ZIJ)+
         $      YIJ*(G22*YIJ+G23D*ZIJ)+G33*ZIJ*ZIJ
              RRR=SQRT(RSQ)
              RRR=RRR/H(1,1)
    C====================================================================
    C      以上用数组G和H的结果与下同
    C      RRR=SQRT(XIJ**2+YIJ**2+ZIJ**2)
    C      G11=H(1,1)**2
    C====================================================================
              IF(RRR.LT.HALF)THEN
               IG=INT(RRR/DELR)
               GG(IG)=GG(IG)+2
              ENDIF
           ENDDO
             ENDDO

          ELSE IF(NSWITCH.EQ.2)THEN
            DO I=1,NHIS
               R(I)=DELR*(I+0.5D0)
            ENDDO
            DO I=1,NHIS
               VB=(4.D0/3.D0)*PI*(((I+1)**3-I**3)*(DELR**3))
               GNID=VB*DEN_IDEAL
               GG(I)=GG(I)/(NGR*MOLSP*GNID)
            ENDDO
            OPEN(UNIT=31,FILE="GR.DAT")
            DO I=1,NHIS
               WRITE(31,*)R(I),GG(I)
            ENDDO
            CLOSE(31)

            ENDIF

            RETURN 
            END
    这样的代码看着不够明了。。。。。。

    伪代码:

    for (int i = 0; i < TOTN - 1; ++i)
      for (int j = i + 1; j < TOTN; ++j) {
        double dij = sqrt( pow(Pos[0]-Pos[j][0], 2) + pow(Pos[1]-Pos[j][1], 2) + pow(Pos[2]-Pos[j][2], 2));
        int kbin = func(dij); // dij所对应的bin的序号
        g(kbin) += 2;
      }
      // normalize
      for (int k = 0; k < NBIN; ++k)
        g(k) /= 4.0 * PI * r(k) * r(k) * dr * RHO; // r 为第k个bin所对应的距离值

    calculate radial distribution function in molecular dynamics (转载科学网樊哲勇

    Here are the computer codes for this article:  

    md_rdf.cpp

    find_rdf.m

    test_rdf.m    

     

             Calculating radial distribution function in molecular dynamics

    First I recommend a very good book on molecular dynamics (MD) simulation: the book entitled "Molecular dynamics simulation: Elementary methods" by J. M. Haile. I read this book 7 years ago when I started to learn MD simulation, and recently I enjoyed a second reading of this fantastic book. If a beginner askes me which book he/she should read about MD, I will only recommend this. This is THE BEST introductory book on MD. It tells you what is model, what is simulation, what is MD simulation, and what is the correct attitude for doing MD simulations.

    In my last blog article, I have presented a Matlab code for calculating velocity autocorrelation function (VACF) and phonon density of states (PDOS) from saved velocity data. In this article, I will present a Matlab code for calculating the radial distribution function (RDF) from saved position data. The relevant definition and algorithm are nicely presented in Section 6.4 and Appendix A of Haile's book. Here I only present a C code for doing MD simulation and a Matlab code for calculating and plotting the RDF. We aim to reproduce Fig. 6.22 in Haile's book!

    Step 1.

    Use the C code provided above to do an MD simulation. Note that I have used a different unit systems than that used in Haile's book (he used the LJ unit system). This code only takes 14 seconds to run in my desktop. Here are my position data (there are 100 frames and each frame has 256 atoms):

    r.txt

    Step 2.

    Write a Matlab function which can calculate the RDF for one frame of positions:

    function [g] = find_rdf(r, L, pbc, Ng, rc)

    % determine some parameters

    N = size(r, 1);         % number of particles

    L_times_pbc = L .* pbc; % deal with boundary conditions

    rho = N / prod(L);      % global particle density

    dr = rc / Ng;           % bin size

    % accumulate

    g = zeros(Ng, 1);

    for n1 = 1 : (N - 1)                               % sum over the atoms

       for n2 = (n1 + 1) : N                          % skipping half of the pairs

          r12 = r(n2, :) - r(n1, :);                  % position difference vector

          r12 = r12 - round(r12 ./L ) .* L_times_pbc; % minimum image convention

          d12 = sqrt(sum(r12 .* r12));                % distance

          if d12 < rc                                 % there is a cutoff

              index = ceil(d12 / dr);                % bin index

              g(index) = g(index) + 1;                % accumulate

          end

      end

    end

    % normalize

    for n = 1 : Ng

       g(n) = g(n) / N * 2;           % 2 because half of the pairs have been skipped

       dV = 4 * pi * (dr * n)^2 * dr; % volume of a spherical shell

       g(n) = g(n) / dV;              % now g is the local density

       g(n) = g(n) / rho;             % now g is the RDF

    end

    Step 3.

    Write a Matlab script to load the position data, call the function above, and plot the results:

    clear; close all;

    load r.txt; % length in units of Angstrom

    % parameters from MD simulation

    N = 256;                % number of particles

    L = 5.60 * [4, 4, 4]; % box size

    pbc = [1, 1, 1];        % boundary conditions

    % number of bins (number of data points in the figure below)

    Ng = 100;

    % parameters determined automatically

    rc = min(L) / 2;     % the maximum radius

    dr = rc / Ng;        % bin size

    Ns = size(r, 1) / N; % number of frames

    % do the calculations

    g = zeros(Ng, 1); % The RDF to be calculated

    for n = 1 : Ns

       r1 = r(((n - 1) * N + 1) : (n * N), :); % positions in one frame

       g = g + find_rdf(r1, L, pbc, Ng, rc);    % sum over frames

    end

    g = g / Ns;                                 % time average in MD

    % plot the data

    r = (1 : Ng) * dr / 3.405;

    figure;

    plot(r, g, 'o-');

    xlim([0, 3.5]);

    ylim([0, 3.5]);

    xlabel('r^{ast}', 'fontsize', 15)

    ylabel('g(r)', 'fontsize', 15)

    set(gca, 'fontsize', 15);

    Here is the figure I obtained:

    Does it resemble Fig. 6. 22 in Haile's book?

  • 相关阅读:
    多线程 thread和Task的用法以及注意事项
    Application.DoEvents()的使用
    测试
    python-包管理工具-pip
    压缩下载文件
    如何修改Django中的日期和时间格式 DateTimeField
    Django model数据 时间格式
    模板语法
    Django框架基础-MTV模型
    view架构
  • 原文地址:https://www.cnblogs.com/Simulation-Campus/p/8994935.html
Copyright © 2020-2023  润新知