• Thermal de Broglie wavelength


    Thermal de Broglie wavelength



    In physics, the Thermal de Broglie wavelength is defined for a free ideal gas of massive particles in equilibrium as:

    Lambda    =     sqrt{frac{h^2}{2pi mkT}}     =     frac    {h}    {(2 pi m k T)^{1/2}}

    where

    The thermal de Broglie wavelength is roughly the average de Broglie wavelength of the gas particles in an ideal gas at the specified temperature. We can take the average interparticle spacing in the gas to be approximately (V/N)1/3where V is the volume and N is the number of particles. When the thermal de Broglie wavelength is much smaller than the interparticle distance, the gas can be considered to be a classical or Maxwell-Boltzmann gas. On the other hand, when the thermal de Broglie wavelength is on the order of, or larger than the interparticle distance, quantum effects will dominate and the gas must be treated as a Fermi gas or a Bose gas, depending on the nature of the gas particles. The critical temperature is the transition point between these two regimes, and at this critical temperature, the thermal wavelength will be approximately equal to the interparticle distance. That is, the quantum nature of the gas will be evident for

    displaystyle     frac{V}{NLambda^3} le 1      , {
m or}      left( frac{V}{N} 
ight)^{1/3} le Lambda

    i.e., when the interparticle distance is less than the thermal de Broglie wavelength; in this case the gas will obeyBose-Einstein statistics or Fermi-Dirac statistics, whichever is appropriate. On the other hand, for

    displaystyle     frac{V}{NLambda^3} gg 1      , {
m or}      left( frac{V}{N} 
ight)^{1/3} gg Lambda

    i.e., when the interparticle distance is much larger than the thermal de Broglie wavelength, the gas will obey Maxwell-Boltzmann statistics.

    Contents

    Derivation

    For a derivation of displaystyle Lambda, see configuration integral.

    Massless particles

    For a massless particle, the thermal wavelength may be defined as:

    Lambda= frac{ch}{2kTpi^{1/3}}

    where  is the speed of light. As with the thermal wavelength for massive particles, this is of the order of the average wavelength of the particles in the gas and defines a critical point at which quantum effects begin to dominate. For example, when the thermal wavelength of the photons in a black body radiator is of the same order as the wavelength of the radiation (or larger), the "classical" Rayleigh-Jeans law becomes inapplicable, and the "quantum"Planck's law must be used.

    The massless thermal wavelength is derived from the more general definition of the thermal wavelength due to Yan (Yan 2000) described below.

    General definition of the thermal wavelength

    A general definition of the thermal wavelength for an ideal quantum gas in any number of dimensions and for a generalized relationship between energy and momentum (dispersion relationship) has been given by Yan (Yan 2000). It is of practical importance, since there are many experimental situations with different dimensionality and dispersion relationships. If  is the number of dimensions, and the relationship between energy (E) and momentum (p) is given by:

    E=ap^s\,

    where  and  are constants, then the thermal wavelength is defined as:

    Lambda=frac{h}{sqrt{pi}}left(frac{a}{kT}
ight)^{1/s} left[frac{Gamma(n/2+1)}{Gamma(n/s+1)}
ight]^{1/n}

    where Γ is the Gamma function. For example, in the usual case of massive particles in a 3-D gas we have n=3 , andE=p2/2m  which gives the above results for massive particles. For massless particles in a 3-D gas, we have n=3 , and E=pc  which gives the above results for massless particles.

    References

    • Zijun Yan, "General thermal wavelength and its applications", Eur. J. Phys. 21 (2000) 625-631. http://www.iop.org/EJ/article/0143-0807/21/6/314/ej0614.pdf
     
    This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Thermal_de_Broglie_wavelength". A list of authors is available in Wikipedia.
  • 相关阅读:
    nginx学习1
    win7右下角的网络连接图标不见了~终极必杀技
    centos配置history记录每个用户执行过的命令
    Screen会话命令 Linux
    Linux的运行级别和chkconfig用法
    Linux与Windows中的UTC时间
    Solr 缓存配置
    SolrJ 查询数据
    Solr之困
    solr 查询参数说明
  • 原文地址:https://www.cnblogs.com/Simulation-Campus/p/8794554.html
Copyright © 2020-2023  润新知