• POJ1947 Rebuilding Roads


     
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 11334   Accepted: 5222

    Description

    The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, number 1..N) after the terrible earthquake last May. The cows didn't have time to rebuild any extra roads, so now there is exactly one way to get from any given barn to any other barn. Thus, the farm transportation system can be represented as a tree. 

    Farmer John wants to know how much damage another earthquake could do. He wants to know the minimum number of roads whose destruction would isolate a subtree of exactly P (1 <= P <= N) barns from the rest of the barns.

    Input

    * Line 1: Two integers, N and P 

    * Lines 2..N: N-1 lines, each with two integers I and J. Node I is node J's parent in the tree of roads. 

    Output

    A single line containing the integer that is the minimum number of roads that need to be destroyed for a subtree of P nodes to be isolated. 

    Sample Input

    11 6
    1 2
    1 3
    1 4
    1 5
    2 6
    2 7
    2 8
    4 9
    4 10
    4 11
    

    Sample Output

    2

    Hint

    [A subtree with nodes (1, 2, 3, 6, 7, 8) will become isolated if roads 1-4 and 1-5 are destroyed.] 

    Source

     

    给你一棵有n个节点的树,可以砍掉其中一些边,问最少砍几条边可以留下一个有p个节点的树(剩下的必须是一整棵树)

    标准树形DP

     
    各种改都改不对,无奈开启了代码标准比对模式,仍然没用。
    这时我注意到不管怎么改输出的都是一样的解,md卡程序了!关了IDE,删了编译好的程序,开IDE重编译,输出了正解……
    然而我恐怕再也无法知道我到底是在哪一步改对了的。
     
     1 /*by SilverN*/
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<cstring>
     5 #include<cstdio>
     6 #include<cmath>
     7 #include<vector>
     8 using namespace std;
     9 const int mxn=160;
    10 int read(){
    11     int x=0,f=1;char ch=getchar();
    12     while(ch<'0' || ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    13     while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
    14     return x*f;
    15 }
    16 int n,p;
    17 int f[mxn][mxn];
    18 int num[mxn];
    19 vector<int>e[mxn];
    20 void dp(int u){
    21     int i,j,k;
    22     num[u]=1;
    23     if(!e[u].size()){f[u][1]=0;return;}
    24     for(i=0;i<e[u].size();i++){
    25         int v=e[u][i];
    26         dp(v);
    27         num[u]+=num[v];
    28         for(j=num[u];j;j--){
    29             for(k=1;k<j;k++){
    30                 f[u][j]=min(f[u][j],f[u][j-k]+f[v][k]-1);
    31             }
    32         }
    33     }
    34     return;
    35 }
    36 int main(){
    37     n=read();p=read();
    38     int i,j;
    39     int u,v;
    40     for(i=1;i<n;i++){
    41         u=read();v=read();
    42         e[u].push_back(v);
    43         num[u]++;
    44     }
    45     memset(f,0x3f,sizeof f);
    46     for(i=1;i<=n;i++){
    47         f[i][1]=num[i];
    48     }
    49     dp(1);
    50     int ans=f[1][p];
    51     for(i=1;i<=n;i++){
    52         ans=min(ans,f[i][p]+1);
    53     }
    54     printf("%d
    ",ans);
    55     return 0;
    56 }
  • 相关阅读:
    如何制作动态层分组报表
    填报表之数据留痕
    填报表中也可以添加 html 事件
    填报脚本之轻松搞定复杂表的数据入库
    在报表中录入数据时如何实现行列转换
    如何在报表中绘制 SVG 统计图
    如何用报表工具实现树状层级结构的填报表
    6.JAVA_SE复习(集合)
    JAVA_SE复习(多线程)
    数据库基本概念
  • 原文地址:https://www.cnblogs.com/SilverNebula/p/5918273.html
Copyright © 2020-2023  润新知