Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 503 Accepted Submission(s): 200
Problem Description
Give you a Graph,you have to start at the city with ID zero.
Input
The first line is n(1<=n<=21) m(0<=m<=3)
The next n line show you the graph, each line has n integers.
The jth integers means the length to city j.if the number is -1 means there is no way. If i==j the number must be -1.You can assume that the length will not larger than 10000
Next m lines,each line has two integers a,b (0<=a,b<n) means the path must visit city a first.
The input end with EOF.
The next n line show you the graph, each line has n integers.
The jth integers means the length to city j.if the number is -1 means there is no way. If i==j the number must be -1.You can assume that the length will not larger than 10000
Next m lines,each line has two integers a,b (0<=a,b<n) means the path must visit city a first.
The input end with EOF.
Output
For each test case,output the shorest length of the hamilton path.
If you could not find a path, output -1
If you could not find a path, output -1
Sample Input
3 0
-1 2 4
-1 -1 2
1 3 -1
4 3
-1 2 -1 1
2 -1 2 1
4 3 -1 1
3 2 3 -1
1 3
0 1
2 3
Sample Output
4
5
Hint
I think that all of you know that a!=b and b!=0 =。=Source
Recommend
zhouzeyong
状态压缩DP,详解见代码
1 /**/ 2 #include<iostream> 3 #include<cstdio> 4 #include<cmath> 5 #include<cstring> 6 #include<algorithm> 7 using namespace std; 8 const int INF=1e6; 9 const int mxn=4194304;//2^22 10 int dp[mxn][22];//[遍历状态][最后到达点]=最短路径 11 int dis[22][22]; 12 int pre[22];//每个点的前驱要求 13 int n,m; 14 int xn; 15 int main(){ 16 while(scanf("%d%d",&n,&m)!=EOF){ 17 memset(pre,0,sizeof pre); 18 int i,j; 19 xn=1<<n; 20 for(i=1;i<xn;i++) 21 for(j=0;j<n;j++){ 22 dp[i][j]=INF; 23 } 24 //init 25 for(i=0;i<n;i++) 26 for(j=0;j<n;j++){ 27 scanf("%d",&dis[i][j]); 28 if(dis[i][j]==-1)dis[i][j]=INF; 29 } 30 int u,v; 31 for(i=1;i<=m;i++){//保存前驱要求 32 scanf("%d%d",&u,&v); 33 pre[v]|=(1<<u); 34 } 35 dp[1][0]=0; 36 for(i=1;i<xn;i++){ 37 for(j=0;j<n;j++){ 38 if(dp[i][j]==INF)continue;//i状态之前没走到 39 for(int k=1;k<n;k++){ 40 if(!(i&(1<<j)))continue;//j不在已走过的集合中 41 if(i&(1<<k))continue;//k在走过的集合中 42 if(pre[k]!=(i&pre[k]))continue;//k点前驱要求未满足 43 dp[i|(1<<k)][k]=min(dp[i|(1<<k)][k],dp[i][j]+dis[j][k]); 44 } 45 } 46 } 47 int ans=INF; 48 for(i=0;i<n;i++)ans=min(ans,dp[xn-1][i]); 49 if(ans>=INF) printf("-1 "); 50 else printf("%d ",ans); 51 } 52 return 0; 53 }